U. S. DEPARTMENT OF COMVERCE
NATI ONAL OCEANI C AND ATMOSPHERI C ADM NI STRATI ON
NATI ONAL WEATHER SERVI CE
OFFI CE OF SCI ENCE AND TECHNOLOGY
METEOROLOG CAL DEVELOPMENT LABORATORY

AWIPS
APPLICATION INTEGRATION
FRAMEWORK MANUAL

—Build 5.1.1
JUNE 2001

June 2001

Application Integration Framework Manual
Rel ease 5.1.1

Tabl e of Contents

June 2001

SECTI ON TITLE PACGE

Li st of Tables Vi

June 2001

List of Exhibits Viii

EREPREE
w N ko

NONNNNRNRNRNNNNNNNNNNNRNDNN
WWWwwwwwwwwwwewEwwweN e o

PPPPPRPO
A wWN R

NNOUUUADWONNNNNNN

ga b~ wWN PR

©O~NOURWNEREPERPR

P AW WwWN P
[EEY

[

I ntroducti on and Overvi ew

AWPS Architecture

System Hardware Architecture

Maj or Syst em Sof t war e Component s
I nput and Qut put Devices

Local Applications Devel opnent (non-D2D)
Common Deskt op Envi ronment (CDE)

Sof tware Tool s

Setting up a Local Devel opnent environnent
Local Devel opnent Host

Locally Attached non- AWPS Pl atforns
Data Server

Appl i cations Server

Wor kst ation

LAN and CPU Consi derati ons

Local Devel opnent User Accounts

Local Devel opnent User Resources

Local Devel opnent Directory Structure
CPU Al |l ocation Control

Control l'ing Perm ssions

Operating System

Network I nfornmation Services (NS)

I nform x dbspaces

W de- Area Net wor k

Di sk

Di sk Al ocations

System File Information

Codi ng and Docunentati on Qui del i nes

Sof t war e nam ng conventi ons

Name Lengt hs

Public APl Function and Subroutine Nanes
Nunber/ Nam ng of Subdirectories

Synbol Names and Restrictions

Accommodat i ng Backup/ Fai l over: Floating names and
addr esses

H gh Level Languages

Al owabl e C and FORTRAN ext ensi ons and features
I nt er - Language Communi cati on

Sour ce Code Conpil ation

To conpil e C code under the gnu C++ conpiler
Conpi | er Fl ags

X- W ndows System Libraries

Scripting Languages

Tcl / Tk

Shel | Scripts

Envi ronment Vari abl es

Shared and Archive Libraries

Description

Recommendati ons for Use

Error Logging and User Notification

I nternal Docunentation

Prol ogues and Source Control

June 2001

R e
N R R R

l
W 0o ~NOO OO OLADNPRF P

INIINEINENENENENESENENSENENENENENENENENENENSENEN]
PR R RRRRPR
NNRRRRLRRLRO

'
[EEY
N

(JO(JO(JO(.IAJ(JO(JO(JO
A WODNDNPFP PP

R R
P P © © © o Ul o
o o

W W wwwwowowowowowowowwwowow
PR R R R R R
NN WWNR R

|
[EEY
~

© 0~ ~

e e i il i i el sl ol e e e e e e e el e il Sl Sl Sl i i el el
MNNMNNOMNOMRONNOMNNNOMODROMNMNOMNNNMNNMNNMNNMNNOMNRNNNNMNNODNNODNNPREPRRRREPRPRERRPRRRRERERERRRRRERERRE RO

CPENOTRWONNNNRNNNNE R R R R R

WORWWWWWRROWRONNNRNRNNNNNNN R

AwNNBR

WwwwenN e

A WDN P

URWNNNNRNRN R

WwwwhdhNNDNRERPER

WwwN R

Header Files and Locations

Standard Header Files

Ext ernal Docunent ation

Input, Qutput, Display, and Printing

Dat a Managenent and Access
Dat a Storage/ Access Packages

Flat files
Net CDF
Plotfiles

Dat aKeys, Dat aAccessKeys

WBR- 88D Radar Products

Local Data Files

I nf or m x

The dbaccess utility

Inform x ESQ./C

I nf or m x Dat abases

Text Product Database

ADAP2T (Digital Forecast) Database

Hydr ol ogi cal Dat abase

Verification and dinate (hndb) Database

Data on a Renote AW PS

Ext ernal Data

Wiere and How to Access Data Sets

Data | nventory Met hods

Time and Date Conventi ons

Data Access Controls

Inform x Concurrency Controls: Database Locks
Pur gi ng

Data O asses

Aircraft observations

Gids

Nam ng conventions for grid directories and files
Organi zation of netCDF grid files

A obal attributes

Di nensi ons and coordi nate vari abl es

Variables, with their dinensions and attributes
Gid variables with their conpanion attribute variables
Vari abl es representing overall file characteristics
Q her supporting files

Exi sting software (APIs) for reading netCDF grid files
Exi sting software (APIs) for witing netCDF grid files
Poi nt Data

METAR Dat a

Fi | e nam ng conventions

Organi zation of files

Supporting files

RACB Dat a

Fi | e nam ng conventions

Organi zation of files

Supporting files

Li ght ning Dat a

Fi | e nam ng conventions

Organi zation of files

Supporting files

June 2001

L e e e L I |
PRPRRPRRPRRPRPRPRPRPRREPRPRRLRREROOOOO®NMO®OO®ODEOMODNNDOOOODWWR R
P 00O UUDMIMWWNNNIERRE

N

w

w

D

D

D

D

~

~

[ee]

o o

o o

2B AEDMBAADMBEADALDBDADMBMBADMBAMADMAEDLDBADMBMBADMBABADADLDMBBADMBADMBAADRAEDMDBLADMDBLADL
hbbbbwwwcﬁwwwwwmmm

U

N el e o el el el el Tl T T T N N e T T T ol T T T T N
WHWONNN

COOOOOCOOPPIPXRINNNNOTNNNATTNEDEDDEDEDEDEOLOWRENWOLREWLLW

H
o
~No ok~ wWwNPRE

W N -

W N -

A WDN P

ONNN~NoooO OO RDRDRS

AWNMNNNPR

N

Wnd Profiler Data

Fil e nam ng conventions

Organi zation of files

Supporting files

Mari ne Report Data

Fil e nam ng conventions

Organi zation of files

Supporting files

LDAD (Local Data Acquisition and D ssem nati on)
Fil e nam ng conventions

Organi zation of files

Supporting files

Model Soundi ngs

Fil e nam ng conventions

Organi zation of files

Supporting files

Reading and witing to point data files
RADAR Product s

Nam ng conventions for image directories and files
Radar Text Products

Radar product data fornat

AWPS APls for radar product processing
Radar Data Access

Radar Data Processing APls

Satellite i magery

Nam ng conventions for image directories and files
Organi zation of netCDF inmage files

A obal attributes

D nensi ons and coordi nate vari abl es
Variables, with their dinensions and attributes
Q her supporting files

Software APls for net COF inmage file 1/0
Satel lite soundings

Text Dat abase

Text Product ldentifiers

Supporting files

Text Database 1/0 APl's

Digital Forecast Data

Gids

Zone DFM

Stati on DFM

| FP Dat abase Access, APls

Verification Data

Public Format, Content

Avi ati on Format, Content

Marine Format, Content

Hazar dous Weat her Format, Content

Fire Wather Format, Content

Hydr ol ogi ¢ Format, Content

Verification Database Access, APls

NCEP (REDBOOK) G aphi cs

Site-Specific Data Sets

Site-Specific Static Data

Site Custonization and Preference Data
Site Specific Data Formats and Locations

v

June 2001

[N

U

N

w

w

w

(&)]

]

]

]

(4]

(4]

(4]

(4]

(4]

(4]

NN

w N

AW

o A

o o

©

o o

» O

~N o

~

~

o

o

o

o

o

o

o

o

o

-

-

-

1
-

g

N -

-b-ll>-b-b-b-b-b-bbbbbbbbbbbbbbbbbbbbbb
CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD\I\l\l\l\l\l\l\l0380‘)0‘)0‘)0‘)0‘)0‘)0‘)0‘)010101010101mmbbbhbbbbbbh

N

June 2001

4.3.4 Site-Specific Data Creation and Managenent (for System 4-82
Manager's Manual i nstead?

Initiation of Local Applications
From a D2D Menu

From t he CDE Pop-Up Menu

From CDE | cons

From t he Command Li ne

Fromthe crontab

HP M Service Quard

GECRCRG NG NO N
o 0ok WNPEFE O
U'IU'IU'I(IJ'IU'IU'IU'I
A NMNDNDNDNPREP PR

6.0 Product D ssem nation 6-1
6.1 Di sseni nati on Mechani sns 6-1
6.1.1 WAN 6-1
6.1.1.1 The handl eOUP interface 6-2
6.1.1.2 The distributeProduct interface 6-3
6.1.2 LDAD 6-3
6.1.3 Asynchr onous Product Schedul er (APS) 6-3
6.2 Product Archive 6-4
7.0 On- Li ne Resources and URLs 7-1
8.0 Ref er ences 8-1
9.0 Acr onymns 9-1
APPENDI CES
Appendi x 1 Net CDF APl exanples for reading point data files Al-1
Appendi x 2 Sanpl e output from“test&idKeyServer” to list valid A2-1
values for AWPS grid APls
Appendi x 3 Sunmmary of applicable data subdirectories by WSR-88D A3-1
product type
Appendi x 4 Ext ernal Docunentation Standards for Local |l y-Devel oped Ad-1
AW PS Applications
Appendi x 5 man pages for handl eQUP. pl and distributeProduct CLIs A5-1
Appendi x 6 Tools to Monitor Application Performance and Resources A6-1
Appendi x 7 Suggest ed Fornat for Mintenance Docunentation A7-1
ATTACHVENTS
Attachnent 1 MDL FORTRAN Codi ng Gui del i nes ATT1-1
Attachnent 2 MDL C Software | nplenentati on Conventions 52 pp.
Attachnent 3 FX- ALPHA C and C++ Codi ng Conventi ons 10 pp.

vii

June 2001

viii

2.3. 1.

2.3. 1.

5-1

5-2

2.3.11.2-1

3.2.3

2-1

.1-1

.1-1

Li st of Tables
DESCRI PTI ON

I nput and out put device availability and
| ocations on AW PS.

Installed locations and licensing terns for
Commercial, Of-the-Shelf (COTS) software
provided with the Build 4.2 version of AWPS at
the WFO and RFC.

Possi bl e Server Conbi nati ons

Performance Factors for AS and DS

Fil e System Qui del i nes

Server and Wrkstation Mdel s

I nput and out put device configurati ons on AW PS.

Storage formats and nethods for the current
cl asses of AWPS online hydroneteorol ogi cal
dat a.

Correspondence bet ween net CDF and progranm ng
| anguage vari abl e types.

METAR data stored in a binary plotfile.
METAR data stored in a netCDF file.

RAOB data stored in netCDF files and binary
plotfiles.

Li ghtning data stored i n net COF and bi nary
plotfiles.

Wnd profiler data stored in net COF and bi nary
plotfiles.

Marine report data stored in netCDF files.

Hydr ol ogi cal data stored in LDAD hydro net CDF
files.

Aut onat ed nesonet data stored in LDAD nesonet
net CDF files.

Cooperative and dial-in data stored in LDAD
manual net CDF fil es.

Subdirectory nane definitions for the radar

iX

June 2001

PACGE

1-3

2-3

2-7

2-7

2-12

3-10

3-20

4- 35

4- 36

4- 38

4-41

4-41

4-43

4-47

4- 48

4-51

June 2001

product data attribute product Type.
4-58

4.2.4.1-

Subdi rectory 4-60 4.2.4.1-
nane 3
definitions

for the radar

product data

attribute

el evati on.

Subdi rectory 4-62
nane

definitions

for the radar

product data

attribute

resol ution.

4.2.4.1-4 Subdirectory nane definitions for the radar 4-62
product data attribute levels

A6-1 UNI X Tool s A6- 10

EXH Bl T

5.5-1

5.5-2

A2-1

A2-2

A2-3

A4-2

Ad- 4

A4-6

AM-T

A4-8

Li st of Exhibits
DESCRI PTI ON
Arrival Pattern for Gids
Arrival Pattern for METAR Products

Sanmpl e output lines of “test&idKeyServer -v” to
list valid values for fieldlD.

Sanmpl e output lines of “test&idKeyServer -p” to
list valid values for planelD.

Sanmpl e output lines of “test&idKeyServer -s” to
list valid values for sourcelD and grid_source.

Contents and format for PART A. PROGRAM
| NFORMATI ON.

Contents and format for PART B PROGRAM FI LE
AND DATABASE | NFORVATI ON.

Contents and format for PART C. PROGRAM
CREATI ON AND | NSTALLATI ON PROCEDURE.

Contents and format for PART DO PROGRAM
EXECUTI ON AND ERROR CONDI TI ONS.

Contents and format for PART A: SUBPROGRAM
| NFORMATI ON.

Contents and format for PART B SUBPROGRAM FI LE
AND DATABASE | NFORVATI ON.

Contents and format for PART C. SUBPROGRAM
CREATI ON AND | NSTALLATI ON PROCEDURE.

Contents and format for PART D. MANUAL PAGE FOR
PROGRAMVERS.

June 2001

PACGE

5-3

5-4

A2-1

A2-1

A2-1

A4- 17

A4-19

A4-20

A4-21

A4-22

A4-24

A4- 25

A4-26

I NTRCDUCTI ON

This AWPS Application Integration Framework Manual (AIFM is intended to
assist both field and headquarters personnel in using the AWPS environnent to
devel op and i npl enent hydronet eorol ogi cal applications. An AWPS Loca
Applications Wrking Goup with National, Regional, and field representation
has been established to define the policy and nechani sms under which | oca
devel opnent and distribution of AWPS applications may proceed. The Al FM
provi des the technical guidance to the |ocal software devel oper, and wll be
updated as often as warrant ed.

A very brief overview of the AWPS architecture is given in AIFM Chapter 1 in
case it is not easily accessible el sewhere. Chapter 2 and Appendi x 6 descri be
the AWPS environnent, devel opnent resources, software tools, and guidelines
on how to mnimze the inpact of |ocal applications devel opnent on the
operational AWPS. Coding | anguages, guidelines and standards are presented
in Chapter 3, and in Attachnents 1, 2, and 3. Docunentation standards and

gui delines are presented in Chapter 3 and Appendi x 4. Chapter 4 describes the
| ocations, content, and nethods of access to the various national hydro-

net eorol ogi cal data received and stored on AWPS. The nethods by which | oca
applications may be |launched is docunented in Chapter 5, and the available
nmechani sns for dissemnating official and draft products from AWPS are
presented in Chapter 6 and Appendix 5

AWPS is a conplex environment in which to develop, integrate, and run
applications software. However, procedures and Application Progranm ng
Interfaces (APIs), with the associated underlying software, are being
increnentally defined to assist developnent. |In one respect, applications
that are designed to provide a display to a user can be thought of in two
categories--those that utilize the AWPS two-di mensi onal display (D2D) and
those that don't. Three provisions for using D2D currently exist--Extensions
Appl i cations, and Depictables. Extensions and Depictables are quite conpl ex
to use, and uninformed use could easily inpact the operation of AWPS.
Alteratively to using D2D, displays can be created using standard X- W ndow
calls, Tcl/Tk, or blt extensions to Tcl/Tk. Therefore, until safe paths for
the use of D2D can be established, no attenpt should be made to integrate into
D2D. Wien these safe paths and systemresources to utilize them becone
avai |l abl e, a separate chapter of the AIFMwi |l describe them

This AIFMwas witten and edited prinmarily by SAl ¢ General Sciences Corpora-
tion, under contract to the AWPS Program working with the Meteorol ogica
Devel opnent Laboratory, other Governnental organizations, and Litton/PRC
Incorporated (PRC). Sone naterial was taken froman Al FM prepared by PRC
under Governnent contract for the Builds 1.0 and 2.0 architecture. Additiona
new naterial incorporating experience gained with the current AWPS architec-
ture and software was provided by PRC under a task order in the Build 4.2 tine
frame and included in this revision

The AIFMis a work in progress. It will be updated in sonme evol ving and
conpl ex subj ect areas, and has not yet had extensive review or use in the
field. It is being provided in order to assist and gui de devel opnent of good-

quality, well-docunmented |ocal applications. Constructive criticismfrom
sof tware developers in the field is encouraged to allowthis AIFMto be
i mproved.

Xii

June 2001

1.0 AWPS Architecture

AWPS is inplenented as a client-server system The application of client-
server nethods to AWPS facilitates the reuse of functions and provi des an
expandabl e and scal abl e architecture to neet the evol ving needs of long life-
cycl e systens.

A client-server nmechani smenables nultiple applications to share the services
of various functions and allows functions to be reused. For exanple, database
services and display services are shared. Through distribution of services,
the systemis expandabl e and scalable. This is acconplished by the ability to
nove services fromone platformto another, and the ability to increase
increnentally if necessary, the conputing capability needed by any one
service. Both activities may be acconplished w thout affecting other services
or changi ng m ssion applications.

In an integrated systemsuch as AWPS, the multiple functional inplenentations
need to be nmanaged i ndependently of one another as nuch as is practical. For
exanpl e, a change to the data managenent function should not cause a change to
the display and interaction function or a change to hydromet processing. By
separating the functionality, a degree of independence and isolation can be
achi eved. Consider an application that consists of data, processing, and user
interaction. It can be inplenented as one nonolithic application, or it can
be inplenmented as a set of clients that call upon services comon to user
interaction and nultiple applications, such as data retrieval and storage. A
client/server inplenentation pernmits services that are common to nmultiple
applications to be nade available to these applications, without the need to
devel op the service for each of the applications. Such an inplenentation
results in reuse of services.

A client/server inplenentation also provides separation of client processing
fromserver processing such that a client can execute on a conputer physically
different fromthe one on which the service executes. This is particularly
inmportant for AWPS, since it is inplemented with functionality executing on
different conmputers. For exanple, workstations provide the user interface
with which the forecaster interacts, data servers provi de data managenent
services to nmultiple applications, and application servers process hydronet
data and run background applications. Cdient/server also hel ps achi eve high
availability of functions in the event a server fails by being able to switch
to another server, for exanple, froma data service executing on one conputer
to the data service running on another conputer. By constructing applications
that separate functions, a switch to a backup server, due to the failure of
the prinmary server, is transparent to the application

1.1 System Hardware Architecture
The current AWPS system architecture is now docunented in detail in Chapter 2

of the AWPS System Manager’'s Manual for Release 4.3 (SM, and will no | onger
be included in the AIFM

1.2 Major System Software Conponents
This section will only deal with the software conmponents of the AWPS hydro-
nmet eor ol ogi cal subsystem since it is these that are of direct inportance to

the local applications devel oper. Fornmal docunentation of the conplete system

-1

June 2001

sof tware conponents is outside the scope of this docunent. For a conplete
description of the systemsoftware conponents within AWPS refer to the
Syst eni Subsyst em Desi gn Description for Rel ease 4. 3.

Four maj or software conponents conprise the hydroneteorol ogi cal subsystem of
AWPS: Display Two D nensions (D2D), AWPS Data Anal ysis and Product Prepara-
tion Tools (ADAP2T), the NWB Ri ver Forecast System (NWBRFS) at RFCs or the WO
Hydr ol ogi ¢ Forecast System (WHFS) at WFGs, and the Local Data Acquisition and
Di ssem nation (LDAD) subsystem D2D provides a systemfor acquisition,
processing, and display of the majority of the conventional and renotely-
sensed observations and i mage data, forecast nodel grids and graphics, and
AFCS text products. The D2D database is the source of these data sets, and
consists of a conbination of primarily flat file storage, with text product
storage in the Inform x RDBMS. The bulk of Section 4 of this docunent

descri bes the storage fornmats and data access for the data sets in the D2D
dat abase.

ADAP2T provides tools for the initialization, entry, display, and editing of
gridded, areal, and point forecast data. ADAP2T acquires, processes, and
stores centrally- and locally-created objective and manual forecast guidance
including Model Qutput Statistics (M), Local AWPS MOS Program (LAWP)

gui dance, and NCEP Val ue- Added Grids (VAG. The Interactive Forecast Prepara-
tion (IFP) capability of ADAP2T [Limted-Use Interactive Conputer Wrded
Forecast (ICWF) in Build 4.3] also creates |local forecast data sets in the
formof a Digital Forecast Matrix (DFM which is stored and maintained in the
Inform x RDBMS, and generates textual and other official forecast products for
editing and di ssem nati on.

NWBRFS and WHFS are a suite of applications for hydrol ogi cal data anal ysis,
data display, and forecasting, and for nmintenance of the supporting hydrol og-
i cal databases. The bulk of the hydrol ogical data sets are stored and
maintained in the Inform x RDBVS. Docunentation for the hydrol ogi cal data
sets, programming interfaces, and applications are available separately from
RFCs and the Ofice of Hydrology, and are not included in this docunent.

The LDAD subsystem supports acquisition of hydroneteorol ogi cal data from |l ocal
systens external to AWPS, and di ssem nation of AWPS products to external
systens by a nunber of nechanisns. Current (Build 4.3) LDAD dissem nation
mechani sns are restricted to the LDAD Bulletin Board Service. Future disseni-
nati on nechani sns planned for LDAD include fax, ftp, and web-based di ssem na-
tion. Section 4 of this docunent describes the storage formats and data
access for the data sets in the AWPS side of the LDAD database. Section 6
will include a description of LDAD di ssem nati on nechani sns, and references to
current LDAD docurentati on.

1.3 |Input and Qutput Devices

AW PS input and output devices vary by nachine and by site type (WO or RFQ).
Sonme are shared over the network, and others are available only to a specific
host machine. Table 1.3-1 lists the primary I/O devices of interest to

appl i cation devel opers.

June 2001

Table 1.3-1.

| nput and out put devi

ce availability and | ocations on AW PS.

June 2001

I/ O DEVI CE

HOST PLATFORM S)

W5 (x5)

Col or X-
Term (x5)

AS (x2)

DS (x2)

LAN
Resour ce

Col or
G aphi cs
Moni t or

Two each

One each

System
Consol e

One shared
AS' s and DS s

bet ween

Keyboar d

One each

One each

One shared between

AS' s and DS s

Mouse

One each

One each

CD- ROM

One external
drive shared
bet ween al |
W5 s

One each

(One each

DAT
Aut ol oader
Tape Backup

(One shared
bet ween
DS s

B&W Laser
Printer
(Post scri pt)

H gh Speed
Laser Printer
(Post scri pt)

One at
RFCs

Col or | nkj et
Printer
(Post scri pt)

Internal D sk

St or age

3 B each

4 B each

6 B each
(Note 1)

Ext ernal Mass

St or age

24 GB WO
40 GB RFC

Note 1:
devel opnent ,
user space.

On the DS, a 300 MB partition wll
and a 460 MB (WFO or 2240 MB (RFC) partition wll
Rel ease 4.3 introduces a 990 MB partition set up for |ocal

application data (see Section 2.3.3).

be set up for |ocal

applications
be set up as

2.0 Local Applications Devel opment (non-D2D)

This section describes the software tools and the software devel opnent
environnent at AWPS WFO and RFC sites. It gives guidelines for setting up a
| ocal software devel opment environnent which protects the baseline AWPS data
and software configurations.

2.1 Common Desktop Environnment (CDE)

At its nost basic level, the Common Desktop Environment provides a graphical

wi ndow based i nterface to many of the common UN X functions w thout the need
to learn UNI X commands and syntax. CDE provides a File Manager from which the
user can performfunctions such as copy, delete, edit, execute files; navigate
through directories; create and delete directories, and find files by nane or
by specific file contents. CDE has its own text editor with print option
capability, or can be reconfigured to substitute the text editor of your
choice. CDE has a terminal w ndow for the UN X-capable; a print manager for
printer setup and print job nmanagenent; an e-nail application; a Hel p Manager
for online help; a calculator, nan page viewer, appointnment cal endar, and icon
editor; and many other tools and utilities.

CDE has inpl enmented a concept of workspaces, which is another |evel up from
the concept of having nmultiple windows on the screen. Wndow ng gives you the
capability of having several w ndows open on the screen at the same tine, with
the ability to switch between the single active window and the inactive

wi ndows. Wrkspaces, in essence, give you the capability of having severa
screens within one nonitor, each able to containing its own set of multiple

wi ndows, with an ability to instantly switch between screens. The prinmary

di fference between wi ndows and workspaces is that only one workspace is
viewabl e on a nonitor at any tine--they can't be tiled or overlaid, i.e., they
aren't wi ndows-w thi n-w ndows.

In a practical sense, workspaces allow you to keep your screen fromgetting
too cluttered when you need to have several w ndows open and need to switch
between them or can allow you to organi ze rel ated wi ndows i nto groups
contained within their own separate workspaces. Miltiple workspaces don't
gi ve you nore conputing power, nore nenory, or multiple host nmachines--you
only get a convenient way of having nany w ndows open sinultaneously on the
same nonitor with | ess screen clutter

Anot her powerful feature of CDE is the Greate Actions capability. Create
Actions allows you to associate an icon with a UNI X command or script, and to
have the command run in a new y-created term nal wi ndow, or have an applica-
tioninitiated by the command in the action run in a w ndow of its own
creation. The command |ine you enter in the Create Actions nenu allows you to
enter placeholders for input files to be acted on by the command. The power
of the placeholder is that it allows you to select a file icon fromthe file
manager w ndow with the nouse, drag it on top of the Action's icon, and the
command in the action will be executed on the file.

As an exanple, let's say you' ve found a non-copyrighted, freeware application
to display a WBR-88D Echo Tops product in pseudo-3-dinmensional formin an X
wi ndow, but don't have the tine learn howto wite a GJ to inventory and

sel ect the products fromthe AWPS database and fire up the application. You
could set up an action to run the application fromthe command line with the

-1

June 2001

pl acehol der for the Echo Tops product file as an argunent. To bring up the
di spl ay, you would sinply open a File Manager w ndow and change to the AWPS
data subdirectory that holds the Echo Tops product data files (conveniently
nanmed by date and tine), select and drag the file icon for the desired tine
over on top of the application's Action icon, and bingo, the application runs
and up conmes a window with the 3-D display of the sel ected Echo Tops product.

Inits initial configuration, COE will be set up on the WFQ RFC wor kst ati ons
in a mnimal configuration wi th naned workspaces for D2D (display and anal ysis
package) and ot her packages. Oher than workspace switching, few or none of
the CDE tools or applications will be available while the workstation is
logged in to the operational account. To gain access to the full CDE capabil -
ities at the workstation, it will be necessary to | og out of the operational
account on the workstation, and log back in to the user or devel oper accounts.
The System Manager will have to configure CDE for these accounts to nake

avai | abl e whatever tools are needed by users or software devel opers.

Dependi ng on | ocal needs, CDE workspaces and applicati ons may be confi gured
differently at different sites by the System Manager. Al so, the |ocations of
applications within workspaces is a matter of conveni ence and standardi zation
nore than an systemenforced limtation. At any tinme, any active w ndow can
be copied or noved to anot her workspace, which gives the user a great deal of
flexibility in their work preferences.

This section is just an overview of CDE, covering najor itens of interest.
Detail ed informati on can be found on your workstation in the online help
docunents included with the CDE installation, which can be accessed from (what
el sel) the CDE Hel p Manager facility.

2.2 Software Tool s

Each WFO and RFC site is provided with a basic set of Commercial, Of-The-
Shel f (COTS) software to support system nanagenent and nai ntenance, and | ocal
application devel opnent. The installed COTS packages include the foll ow ng:

1 Hp-UX Operating System includes:

- Common Desktop Environment (CDE) and associ ated tools
- vi text editor

- Source Code Control System (SCCS)

- make utility

- xdb and adb debuggers

- md macro preprocessor, for all |anguages

- others, see Table 2-3 of Programm ng on HP- UX

HP- UX ANSI C Conpi |l er

HP- UX FORTRAN Conpi | er

HP DDE Debugger (C/ FORTRAN)

X- W ndow System

CSF Moti f

Vi sual Nunerics FORTRAN Nurerical Libraries (Statistics package)
Inform x RDBMS: On-Line Dynamic Server, SQ., ESQ/C

Omi Back Backup Software

MZ Service GQuard (see Section 5.6)

HP Process Resource Manager (see Section 2.3.5)

June 2001

June 2001

In addition to the commercial software installed on AWPS, additional Of-the
Shel f freeware packages that can be used in |ocal software devel opnent have
been included with the system The terns for use of these freeware packages
are generally contained in a READVE or other internal docunentation file
included with the package. These packages i ncl ude:

net COF 3.4 (network Conmon Data Form array-oriented data file systen)
Tcl / Tk 8.0p2 (Tool Command Language and Tool Kit; scripting and GUJ

t ool s)

Perl 5.003_1 (scripting and text processing)

net COF Perl 3.4

LDM (UCAR s Local Data Manager) (currently National Centers only)

a2ps (ASCl|l-to-PostScript converter, and 'pretty-printer')

BCS (Baseline Control System code revision systemusing 'RCS)

RCS (G\U RCS, Revision Control Systemfor configuration itens/objects)
make (GNU make, build utility)

ispell (G\U ispell: spell checker utility)

blt 2.3 (extensions to Tcl/Tk)

A conplete list can be found at the AWPS Software Engi neering web page at
http://isl715. nws. noaa. gov/ aw ps/ sw cotsfree. ht m .

COTS Software Locations and Licensing

A summary of the initial installed |ocations of the COIS packages and the
license terns for their use is shown in Table 2.2-1. Al COTS software has
been placed in subdirectories under the /opt directory, and freeware used in
the AWPS baseline is under /usr/local/freeware. Non-baseline public domain
or COTS software shall be installed in a site-controlled directory (i.e.,

/ home/ | ocal apps) with synbolic links from/usr/local (if necessary). Conmer-
cial or freeware products SHALL NOT be installed directly into /usr/local or
/opt since these directories are nmanaged via the national baseline. License
terns may vary fromsite to site. See your |local System Manager if there are
questions about the COIS | ocations and |icense terns.

Table 2.2-1. Installation locations and licensing terns for Commercial, Of-
the-Shel f (COTS) software provided with the Build 4.3 version of AWPS at
the WFO and RFC.

COTS Package Install ed NFS Li censing Terns

Locati on Mount i ng 1) Runtinme or Devel oprent
2) # platforn(s), or site
3) NFS nount abl e?

4) # simultaneous users

HP- UX OS B. 10. 20, CDE, Al hosts n/ a Dev; 1 per host; NFS; 2
Vi Users (W5), 8 Users
(DS/ AS)
ANSI C Conpi l er DS Yes Dev; DS1 and DS2; NFS; 1
User
FORTRAN Conpi | er DS Yes Dev; Site; NFS; 1 User

June 2001

COTS Package Install ed NFS Li censing Terns

Locat i on Mount i ng 1) Runtinme or Devel oprent
2) # platforn(s), or site
3) NFS nount abl e?

4) # simultaneous users

Java devel opnent kit LS No Dev; LS; no NFS; 1 User

1.12

DDE Debugger DS Yes Dev; DS1 and DS2; NFS; 1

User

X-W ndow System x11R6 Al HP-UX n/ a Dev; Site; no NFS; Users
pl at f or ns n/ a

OSF Motif 1.2 Al HP-UX n/ a Dev; Site; no NFS; Users
pl atforns n/ a

Vi sual Numerics (I ML) DS Yes Dev; DS1 and DS2; NFS; No

FORTRAN Nuneri cal User Linits

Libraries 3.0

Informx On Line 7.3 DS Yes Dev; DS1 and DS2; NFS; 32
concurrent database
connecti ons

Informx SQ 7.2 DS Yes Dev; DS1 and DS2; NFS;
Devel opnent Phase Sites
Only, 32 concurrent

dat abase connecti ons

Inform x ESQ/C 7. 24 DS Dev; DS1 and DS2; NFS; 16
Users

Net scape Fast Track AS, LS No Runtinme; ASl, AS2, LS; no

Server (includes 4.0.7 NFS; 1 User

Br owser)

HP Omi Back |1 DS No Runti nme; Server-DS1 and

DS2, Agent-Al HP-UX
platforns; no NFS; n/a

M Service Quard DbS; AS No Runtinme; n/a; n/a; n/a

Process Resource Myr. DS/ AS No Runtinme; DS1, DS2, AS1,
AS2; No NFS; Users n/a

As part of AWPS site installation, a full suite of docunentation is provided
to the WFQ' RFC for each |icensed COTS package within the AWPS delivery.

2.3 Setting up a Local Devel opment Environnent

This section contains guidelines for the site's devel opers and AWPS System
Manager to set up an environnent for |ocal application devel opnent. These

gui del i nes necessarily | ean towards the conservative to help insure that |ocal
applications devel opnent has no adverse inpact on operations. The freedom and
access that is allowed to | ocal application devel opers shoul d depend on the

| evel of proficiency of the individuals involved, and this can only be judged

-4

on a case-hby-case basis. The guidelines in this version of the AlFM are based
on the assunption of devel opnment of stand-al one or mninally-integrated
applications. Significantly greater resources and privil eges would be
required for devel opnent of D2D-integrated software, particularly those of the
ext ensi on and depi ctabl e types, and for devel opnent of |FP and WHFS

nodi fications and additions, or applications with external systeminterfaces.

General guidelines or “Rules to Live By” when naki ng system changes:

« A ways save backup copies of files being changed (i.e., *.mddyy, *.orig
or *.old);

« |If achange is applicable to multiple platforns, change only one platform
type at a tine and eval uate the changes inpact on the overall system
This is especially true when maki ng system changes to DS/ AS servers. |If
possi bl e, do not change the Backup Server until the change is proven to
acconplish its goal (also consider operating in failover node). By doing
this, a "pure" recovery (if needed) nay be acconplished via a system di sk
i mage;

¢« Docunent what/when/why the change was nade.

2.3.1 Local Devel opnent Host

Local software devel opnent shoul d be hosted on a single workstation designated
by site managenent as being avail able for devel opment during tines when it is
not fully engaged in operations. The reasoning behind the selection of the W8
is that it is at the extrene end of the processing stream unlike the AS or DS
whi ch nmust serve multiple clients on a nearly-continuous basis. A so, it has
the dedi cated color nonitors with full graphics capability, which is essentia
for running software devel opnent tools and devel opi ng di splay applications.
Since neither the AS nor the DS have a nonitor suitable for running software
devel opnent tools or graphical applications, then i ndependent of which host
nmachine is used for |ocal devel opnent, the devel oper nust occupy a W5 position
to log into the devel opnent host. Conpilation, testing, and debugging on a W5
shoul d not affect the performance of the other workstations, nor should it
significantly inpact their access to data and resources on the DS

In an RFC, devel opnent of |ocal applications and their operational execution
may be perforned on any workstation. The reasoning behind this is that nany
staf f menbers are involved sinmultaneously in devel opnent tasks, operating

i ndependently fromworkstations in nany areas of the office. Devel oprment
activity is dependent on office goals, available staff, and current

hydr orret eor ol ogi cal situations. Adequate, flexible access to an appropriate
nunber of workstations as defined by the local office is essential for an RFC
to effectively and efficiently performit's overall mssion. Wen
operationally installed, execution of |ocal applications nmust occur on the
wor kstation or server best suited to the overall performance and efficiency of
the system Sone |ocal applications nmust be executed via the CRONTAB for
instance. It is the local office nanager's responsibility to insure |oca
applications activity does not adversely affect the perfornmance of other

wor kst ati ons or the servers.

The directories that contain the conpilers, tools, user space, and devel opnent
space are physically |located on the DS disks, but are NFS nounted and
transparently available to the W5(s) on which devel opnent is expected to be
perforned. A disadvantage of using renbte NFS nounting is that it slightly

-5

June 2001

increases the |ocal area network traffic during devel opnent-related file
access (e.g. conpilation, testing, debugging), however, this is likely not to
be significant.

The best place to run a locally devel oped application should be based on a
nunber of factors:

1) Mass storage requirenents

2) Schedul e

3) Menory requirenents

4) Database requirenents

5) Degraded node requirenents
6) LAN and NFS traffic

2.3.1.1 Locally attached non- AWPS pl atforns

There is an NW5 policy which allows connecting additional hardware (e.g., a
PC) to your local AWPS LAN. If this has been done, then an obvi ous place to
execute locally devel oped applications is on these platforns. Consideration
shoul d be given to how to exchange data between these platforns and ot her
AWPS platforns if that is a requirement. The use of “rcp” has been proven to
cause a lot of processes to be initiated on the renote platformif a user with
a long and conplicated .rlogin or .chsrc is used. It nay be better to FTP or
renmote nount an NFS partition. E ther of these nethods, if used, shall be
tested for their inpact on any operational platform Caution should be
exercised in renote nounting partitions. NEVER nount a partition froma non-
AWPS platformonto an AWPS server. This can cause severe systemproblens if
the non- AWPS pl atformgoes offline and | eaves a stale nount on the AWPS
server. Instead, use FTP or nount the AWPS partition onto the non- AWPS
server.

2.3.1.2 Data Server

The DS is the best place to run applications that require a heavy use of the
nmass storage file system See paragraph 3.9.2 for discussion of file system
considerations. Applications that access the database can be run from any
server or workstation, but if an application is generating a lot of short
transactions versus a few long ones, the DS may be the best location for the
appl i cation.

2.3.1.3 Applications Server

The performance of ASl is very critical in severe weather and is nost inpacted
by severe weat her because of the applications running onit. For this reason
shal | be avoided for running |ocally devel oped applications. AS2 is heavily
used by LAPS once an hour for about 10-20 mnutes. Between these runs
however, the CPUis relatively idle. The “ucron” and dance utilities can be
used to view this pattern of execution

2.3.1.4 Workstation

After locally attached non- AWPS platforns, graphics or text workstations are

probably the best choice to run locally devel oped applications. |If a
workstation is used, it does not inpact all users and should not have an
inpact on the servers. |If the graphics workstation is running D2D wi th nmany

-6

June 2001

Table 2.2-1, cont.

frames of inage data, menory swappi ng nay becone an issue and will inpact the
performance of the local user. |If you are going to use a workstation, use one
with | ow usage, not the workstation at the Public or Aviation desks.

An application running on the workstation should have its executable |ocated
on the workstation. |If the application is on an NFS partition, the
application will |oad across the LAN (causing sl ower application |oads), and
also will swap across the LAN. If a program does not |oad very often and
doesn't use enough nenory to nake swapping an issue, the trade off may not be
significant. Future plans to increase the disks on workstations will allow
nore applications to be nounted locally on workstations.

2.3.1.5 LAN and CPU Consi derations

The | argest percentage of LANtraffic is NFS traffic. Any l|ocally-devel oped
sof tware that extensively uses an NFS-nounted partition should be aware of the
impact not only on the LAN but the server CPU utilization. It has been
determined that if large files are being witten to and from NFS partitions,
CPU resources on the server can sonetines be reduced by noving the application
to the server where the data resides. Case in point: The Satellite decoder
was nmoved fromthe ASto the DS. The CPU utilization increase on the DS was
essentially zero. The increase in the CPU utilization because of the

Satel lite decoder nove was offset by the decrease in the nfsd CPU utilization
The AS CPU utilization and LAN utilization obviously decreased. PerfViewis a
good tool to see the traffic and CPU utilization of these kind of
considerations. Use of PerfViewis discussed in Appendi x 6.

There is also a consideration of your site’s hardware baseline. Sone
configurations have sufficient roomon an AS while other sites nay have nore
roomon the DSs. The follow ng table shows the different configurations and
what the relative perfornmance factors are (with the K100 as "1"). This should
just be used for information. A better |ook at your systemw th d ancePl us or
PerfView will give you a better feel for where there are avail able CPU

r esour ces.

Table 2.3.1.5-1. Possible Server Conbinations.

DSs ASs
K220/ 2 D350
D380/ 2 D370/ 1
D380/ 2 K100
K220/ 4 D350

Table 2.3.1.5-2. Performance Factors for AS and DS

June 2001

Rel ati ve Perfornmance Factors - AS Rel ati ve Performance Factors - DS
K100 1 K220/ 2 2.5
K350 1 K220/ 4 4.8

Table 2.2-1, cont.

June 2001

D370/ 1 2.2 D380/ 2 3.5

2.3.2 Local Devel opment User Accounts

Each AWPS systemwill be configured with one user account on the Data Server.
O her accounts specifically for |local applications devel opment shoul d be set
up by the System Manager. The user account for devel opnent shall be kept
separate fromthe account(s) used in nornal operations in order that the data
access and systemresources used in devel opnent can be controlled. A pseudo
user shall be created to run locally devel oped applications. It wll be
easier to track the inpact of the applications using the MeasureWare software
and tools (See Appendix 6). Create a user called “local apps” and where

possi bl e execute the | ocal applications as that user. The devel oper and user
accounts shall be given read-only permssion to AWPS systemand data files so
that no crucial data are inadvertently overwitten or deleted. Creation of
user accounts and setting of file perm ssions are covered in the Chapter 2 of
the AWPS System Manager's Manual .

2.3.3 Local Devel opmrent User Resources

Di sk space is a major issue for |ocal developnent. Developers will need a
al l ocation of disk space for their code and tenporary data sets. The preset
user account will be provided with a fixed partition of size 460 MB (WO or
2240 MB (RFC) of disk space. Developers will have an additional 300 MB area
on the shared (nmirrored) data volunes of the DS, in /aw ps/dev. This area
will be created as part of the site installation procedures. Both /home and
/awi ps/ dev are shared (mrrored) data volume of the DS. The System Manager
will be able to create individual user areas under this directory.

Since these allocations are fixed, it is unlikely that a |ocal applications
devel oper will inadvertently "fill up" the disk storage on the DS with a
runaway application. It is up to the System Manager to assure that devel opers
and users do not obtain or use access to other areas of the disk on the DS, or
to disk storage on other machines. Wth 300M> in the devel oper's partition,

di sk space will be at a premium so either the systemadmnistrators will have
to restrict devel opers from exceed di sk sizes by maintaining quotas, or the
site will have to develop a policy for storing and renoving files.

Rel ease 4.3 provides a new disk partition for site-specific applications and
data. The partition, /data/local, is sized at 990 MB on the shared (mrrored)
data volume of the DS. The primary purpose of this partition is for storage
of local data acquired via LDAD. The partition may al so used for other
site-specific purposes such as site-devel oped executables and scripts required
for operations. The site shall maintain these partitions bel ow the 90%
capacity level to prevent disk thrashing, as well as ITO alarms to the NCF.

2.3.4 Local Developrment Directory Structure

Al shared tables, executable files, etc. shall be placed into the existing
areas under the /aw ps/dev directory (~/data, ~/bin and ~/sharedlib). Hone
directories for site devel oped software or for special users (e.g. fxa or
inform x) shall not be in baselined operational or COTS directories (e.qg.,

Table 2.2-1, cont.

/awi ps/fxa or /opt/informx). Al hone directories for users and/or pseudo
users shall reside in either the /awi ps/dev or /honme partitions.

Users can add paths to their local devel opnent area, or to the site's
executable files, yet they shall not nodify any of the AWPS paths. Wen
devel opi ng new software, users may wi sh to have the executable files placed
into their own devel opment area rather than overwiting an existing version of
an application that is in general use. In addition the users shall naintain
their own ~/tnp space for storing tenporary data files

AWPS utilizes the standard UNI X configuration directory structures. For
i nstance, when storing nman pages, these are always pl aced under the
appropriate man/ man# directory. This nmeans that if an application is
accessible to the site, then there shall be a /man directory in the

devel opnent directory structure for any man pages or hel p docunentation

Sour ce Code

Users shall utilize the /aw ps/dev/develop/src directory for storing their
source code. There shall be a global Makefile for any directories under this
directory, and a configuration file for the different Make options
(MakeConfig). Any additional databases shall conply with Infornm x data
replication requirenments (see the System Manager's Manual). Al source code
shall be conpatible with NIS, neaning that Internet addresses shall not be
hard coded.

Execut abl es

Once the devel opnent of a new function is conplete, and has passed through the
site's debugging and testing cycle, the final version of the executable
file(s) shall be placed in the /aw ps/dev/bin or /aw ps/dev/sharedlib areas.
When source code from/aw ps/dev/devel op/src/dir/ is conpiled the Makefile
shal | place the executable file in the /aw ps/dev/bin area

EXA Areas

No source code or executable code shall be placed into the /aw ps/fxa/bin or
/awi ps/fxa/src areas. In addition, since the data areas are for incomng data
only, any processed data for |ocal applications shall be stored in the | oca
data area.

Data Files

Al configuration files and shared data files shall be stored under the
/awi ps/ dev/data directory. Users can then share those files which will not be
nodi fied each tine a | ocal application is invoked

Local data

Rel ease 4.3 provides a new disk partition for site-specific applications and
data. The partition, /data/local, is sized at 990 MB on the shared (mrrored)
data volume of the DS. The primary purpose of this partition is for storage
of local data acquired via LDAD. The partition nmay al so used for other

June 2001

Table 2.2-1, cont.

site-specific purposes such as site-devel oped executables and scripts required
for operations

Tenporary Files

Local software devel opers should use /tnp for witing tenporary files
Files left on /tnp will be purged, but usually have sufficiently |ong
lifetines to be used by transi ent applications. Developers should not
use directories like /var/tnp and /usr/tnp.

Schedul ed Fi |l e Backup

Omi Back is the facility that nakes a tape backup onto the archive tape, and
is scheduled to run each night. The /hone, /data/local, and /awi ps/dev areas
are included under the basic AWPS backup plan. It shall not be necessary for
devel opers to institute any additional procedures for a guarantee that their
work has been saved to tape archive. Al site-specific files shall be saved
(i.e., a backup copy nade) in a directory covered by Omi Back. Common
practice is to create a /honme/sitelD (e.g., /home/CLE) directory for these
files. This shall include saving ol der versions of files in a predefined
format (i.e., filenane. MVDDYY)

2.3.5 CPU Allocation Contro

Standard scheduling and resource allocation for processes under HP-UX are
handl ed by the HP-UX Schedul er. The HP-UX Schedul er has its own dynam c,
autonatic nethods of allocating CPU resources to processes, and does not all ow
the setting or adjustnent of CPU priorities. A separate CPU resource
managenent tool, the Process Resource Manager (PRM), has been provided with
the COTS suite on AWPS. PRMis a | ow overhead, configurable, process
schedul er which allows the System Manager to control the dynam c HP- UX
Schedul er priorities and control the ambunt of CPU avail able to users and
applications during periods of heavy CPU demand. Detailed descriptions and
instructions for set-up and use of the PRMare contained in the HP Process
Resource Manager User's Quide, which has been delivered with the HP
docunent ati on package for AW PS.

PRM al | ocat es CPU resources by PRM groups, which are independent of other

types of groups on the system such as user groups. |Individual users can be
assigned to a PRMgroup, and then all their owned processes will inherit the
user's PRMresource allocations of the group. |In addition, individua

applications can be assigned to a PRMgroup, and then the application will get
the resource allocation of its assigned group, no natter what the resource
allocation is for the user who is running the application. Al system
processes are initially assigned to PRM SYS, a reserved process resource group
(PRM D) of ID nunber 0 (zero). |If not otherw se assigned, all other user and
application processes are assigned to the OTHERS group, PRM D 1. Besides
these two groups, up to 14 additional groups nay be defined.

Each PRM group is assigned a percentage of total CPU where the sumof the CPU
percentages for all defined groups nust equal 100% \While conpetition for CPU
usage is low, processes are generally allowed as much CPU as necessary based
on their resource denands. However, as total CPU usage begins to increase

-10

June 2001

Table 2.2-1, cont.

towards 100% the PRM control on CPU resources kicks in to limt processes to
as much CPU as their group has been all ocated

PRM s useful ness in controlling the resources required for |ocal devel opnent
depends on how the | ocal devel opnent environnent is set up. |If all |oca

sof twar e devel opnment takes place on a W5 whol |y dedicated to the |oca

sof tware devel oper, then the PRMwill be of no use since it is only available
on the AS and DS, and since there would be no conpetition for resources on the
dedicated W5 in any event. |f local software devel opnent is perforned via
renmote login to accounts on the AS or DS (not reconmrended), then PRM can be
set up to assure that |ocal devel opment activities do not inpact the
operational servers and schedul ed processes on those nachi nes

2.3.6 Controlling Perm ssions

As previously nentioned, |ocal application devel opers shall be under a
separate account for their activities, and that these user accounts be given
read-only permission to AWPS systemfiles and operational data files. These
restrictions will Iimt the chances that a |ocal software devel opment activity
will result in a corruption of a critical file in the systemor the database.
It is up to the individual System Manager to determ ne whether to handl e | oca
devel oper accounts and file access permissions as a user group, or on an

i ndi vi dual user account basis

Access control for data contained in the Inform x RDBVB nust be handl ed
differently than data in Unix files. Permssion to directly access or nodify
information in tables in the database is handl ed through the granting and
revoking of privileges to individual users. Control of concurrent access to
information in a database table is handled in real tine through setting and
rel easi ng dat abase | ocks on specified information in a table. Access to the
I nform x database is discussed in Section 4.1.8

Since access to the text database in Informx is through a UNIX utility and
not directly to the Inform x database through SQ., there is no protection to
this portion of the database besides the built-in limtations of the APIs.
See Section 4.2.7.3 for cautions and gui dance on use of the text database
APl s.

2.3.7 Qperating System

The gui dance here is to NOT nmake any HP-UX operating systemchanges. This

i ncl udes patches and kernel system paraneters. Patches are carefully studied
by PRC for dependenci es and any conflicts with other patches, and then tested
extensively with the AWPS baseline. Patches are very hard to back out of
cleanly and SHALL NOT be applied at all. |If a patch is required, the request
shall be routed through N6 HQ for consideration in a future build.

2.3.8 Network Infornmation Services (NS)
Changes to /etc/hosts, /etc/passwd, /etc/group and /etc/services are managed
through NI S databases. Al changes to these files nust be done on DSl and

propagated via NIS. Reference the AWPS SWMM Section 3.0 for details.
Modi fications to “local versions” of these files are not all owed.

-11

June 2001

Table 2.2-1, cont.

I nconsi stenci es between NIS and "l ocal versions" will cause software to behave
unpredictably and/or erratically.

2.3.9 Inform x dbspaces

An Inform x dbspace is a naned area of allocated disk storage. In the AWPS
basel i ne, Inform x databases (see Section 4.1.2) are created in specific
dbspaces. Inform x dbspace assignnents are defined via the national baseline

and therefore SHALL NOT be changed by site personnel. Loading of site-
speci fic databases is not allowed, except in the case of RFCs which have
predefined dbspaces for this purpose.

2.3.10 Wde- Area Network

The WAN i s designed and sized for NCF nonitoring and product distribution

Any other use is unauthorized and subject to discovery and subsequent
notification to the sites that are msusing the WAN. An exanple of msuse is
NFS nounting of another sites' disks. This should now be disallowed in the
router filtering all sites. Another exanple of msuse is the export of

di spl ays across the WAN. The NCF does this occasionally when troubl eshooting
a site problem but this SHALL NOT be done by the sites for any reason. Use
of the WAN for the exchange of products and files shall not be done on a
regul ar basis

2.3.11 D sk

This section discusses disk allocation and systemfile information, and it
provi des guidelines that are crucial for |ocal software devel opers to consider
for storing their applications.

The Mass Storage on AWPS is redundant for reliability purposes. The
mrroring of the nmass storage nakes wites to the mass storage slower than
wites to non-mrrored storage. |If a local application is creating a
tenporary file that does not need to be redundant, the best perfornmance can be
acconplished by witing to non-mrrored storage. Volune Goups 0 and 1 (vg00
and vg0l) are the internal disks and are not mirrored; Volunme Goup 2 (vg02)
is the mrrored nass storage device. A “bdf” command will show you what
partitions are on what disks.

As a rem nder, please clean up or overwite tenporary files.
2.3.11.1 Disk Alocations

Di sk allocations are defined in the Mass Storage Design docunent and a
controlled via the national baseline and therefore SHALL NOT be changed by
site personnel. The unallocated disk space is evaluated on a per-rel ease
basis and is intended for future use. Local software devel opnent shall be
done in the /awi ps/dev or /hone directory, using /hone/local apps for common
source code and i ndivi dual devel opers’ subdirectories (e.g.

/ home/ | ocal apps/ devnane) for other itens. Release 4.3 provides a new di sk
partition /data/local for site-specific applications and data. The prinary
purpose of this partition is for storage of local data acquired via LDAD. The
partition may al so be used for other site-specific purposes such as

si te-devel oped executabl es and scripts required for operations

-12

June 2001

Table 2.2-1, cont.

June 2001

2.3.11.2 SystemFile Information

The following table lists critical directories and files, and guidelines on
their treatnent by the devel oper or system nanager

Table 2.3.11.2-1. File System Quidelines.

File or Directory

Qui del i nes and Cauti ons

/ (root)

Al'l directory ownerships and perm ssions at the root |evel
shal | be left alone.

[.profile Changes to these files may severely inpact operations of the
/.rhosts platform
/etc This is a sensitive area and shoul d be approached with caution.

Be aware of N S-managed files and, as discussed above, any
changes to N S-nanaged files MJST BE made on DS1 only.

/etc/rc.config.d

These files are especially sensitive and shall not be nodified
wi thout prior discussions with Headquarters.

/etcl/rc. config.dl netconf

This file shall only be change by the site when assigning the
site-specific | P Address to the LDAD server. This assignnent
is made by the "ROUTE_DESTINATION[1]" entry. No other changes
shall be made to this file. Changes to any "[0]" entries wll

i npact WAN access.

[var

This partition contains nmany dynam c operating systemfiles.
Caution shoul d be taken whenever files are being deleted. Wen
freeing space in /var, files under /var/tnp and /var/adnicrash
can be del eted.

var/ spool / cron/ cr ont abs

Files under this directory have been schedul ed via the cron
daenobn. Files shall NEVER be added/del eted fromthis
directory, as it could have adverse effects on the cron daenon.
Proper subnittal/renoval of a user's cron is through the
instructions in Chapter 18 of the SWM

/ stand DO NOT TOUCH. This area is for HP-UX kernel rebuilds.

[usr DO NOT TOUCH. This area contains UNI X tools. Many synbolic
links exist here and critical to proper operations of HP-UX

/ opt These directories are nmanaged via the national baseline and

/usr /| ocal therefore SHALL NOT be changed by site personnel. No products

shal | be added/renoved fromthese directories. The size of
these directories is eval uated whenever a new or upgraded
product is recommended for release. |f sites obtain non-AWPS
software products fromHP that nornally would be installed in
/opt, or public domain software that nornally woul d be
installed in /usr/local, the installation of the package shall
be in a site-controlled directory (i.e., /home/local apps) with
synmbolic links from/opt or /usr/local (if necessary).

-13

June 2001
Table 2.2-1, cont.
3.0 Coding and Docunentation Quidelines

The material in this section is neant to be a guide to devel opnent of robust,
portabl e, naintainable software. The degree to which a | ocal devel oper
adheres to a coding style and a set of standards nay be a matter of persona
choice if that code will be used only by the devel oper or within the office.
Each WFO, RFC, or Region may have its own set of nore conprehensive software
standards for software intended for w der distribution which nay apply to a

I ocal | y-devel oped application. Suggested changes should be provided to your
regi onal LAWG representative to be included in future updates of this
docunent .

The Al FM codi ng and docunentati on gui delines are adapted fromthose originally
defined and used for AWPS hydronet eorol ogi cal applications devel opnent at the
Met eor ol ogi cal Devel opnent Laboratory and PRC, and for the DAR3E system at the
Forecast Systens Laboratory. Additional guidelines for devel opnent using

sof tware tools and packages not originally part of AWPS but used in D2D
(e.g., Tcl/Tk, C++) inside WFO Advanced will be included in future rel eases of
this document.

3.1 Software Nam ng Conventions

This section contains AWPS guidelines for namng of files, source
directories, and code synbols. The degree to which these nam ng conventions
need to be foll owed depends on the intended use for a local application, and
the history of the application. Applications which are not intended to |eave
the local office or work in environments outside the core AWPS hardware and
software may not need to follow the guidelines. The guidelines may not be
practical for nediumor |arge applications which already exist (legacy code),
and which woul d involve a great deal or re-engineering or nodification to neet
the guidelines. Adherence to the guidelines is required for new application
devel opnent which is targeted for national or regional deploynent, or which
woul d have long lifetimes and portability to other platforns.

Nam ng conventions shall be used for |ocally devel oped applications; avoid
using the same (or simlar) nanes as already existing applications, file
systens, or executables. This is especially true for common UNI X execut abl es
and utilities like grep, nore, and cat. Common extensions shall be used, such
as “.sh” for POSI X shell scripts, “.csh” for C Shell scripts, “.pl” for Perl
scripts, and “.f” or “.for” for FORTRAN applications source code, “.c” for C

| anguage source code, and “.C" or “.cpp” for C++ source code. Locally

devel oped applications shall be stored in a “local” subdirectory (e.g.

/ dat a/ f xa/ | ocal apps or /homre/ | ocal apps) using the guidelines in Section 2.3.4.
More detail ed nami ng convention guidance is given in the sections that follow

3.1.1 Name Lengths

File Nanme Length:

For portability, all file nanes, including prograns, libraries, and the |ike,
shall be 14 or fewer characters. Source file nanes shall be 12 or fewer
characters to account for SCCS prefixes, for exanple:

/ awi ps/ dev/ devel op/src/ioutil/getGid.c - contains the getGid() function

June 2001
Table 2.2-1, cont.
[awi ps/ dev/ devel op/ src/ gri b/l oadj.c - contains the | oadOhj () function

Synbol Nane Lengt h:

Synbol nanmes are the nanes used within the source and object code to reference
procedures and paraneters. For exanple, in FORTRAN, the nane that follows in
t he PROGRAM SUBROUTINE, or FUNCTION statenent is the synbolic nanme of the
nodul e, and may differ fromthe filename of the file containing the source
code for the nodul e (see the above two C exanples). ANSI standard nane
conventions are too restrictive at 6 characters. AWPS allows synbol nanes to
be unique up to 31 characters

3.1.2 Public APl Function and Subroutine Nanes

Public and Private APls

Public APlIs are those functions and subroutines which are not unique to a
single application, or which may be used now or in the future by other

applications (i.e., library routines, utility functions, services, etc.).
Private APls are the individual functions and subroutines conprising an
application and unique to the application. It is a matter of judgenent on the

part of the devel oper as to whether a function or subroutine devel oped for an
application is reusabl e by other applications and should be treated as a
public APl or utility. There is no specific synbolic or file naming
convention for private APls, although the nanes should attenpt to be unique to
the extent possible, and the routines should be organized into subdirectories
according to Section 3.1.3.

The AWPS public APl nam ng convention for Cis verbNoun, and for FORTRAN is
in the form VERB_NOUN. The individual public APl nodul es shall followthe
ver bNoun nane convention. Note the use of case in the exanples.

Exanpl e of a C prototype

Status getGid (Product_def the criteria
DBOhj ect nySel ection, float * nyGid);

Exanpl e of a FORTRAN pr ot ot ype
SUBROUTI NE LOG ERROR (Cal l er, Message, Error_Level)

3.1.3 Nunber/Nam ng of Subdirectories
The appropriate nmaster directory shall be determ ned for each application or
library, and for each source nodul e conprising the application or library.
Each master subdirectory shall be placed under the /aw ps/dev/devel op/src
directory. Using the exanple fromSection 3.1.1, the public APl getGid would
be placed in the /ioutil subdirectory, under /aw ps/dev/devel op/src:

/ awi ps/ dev/ devel op/src/ioutil/getGid.c - contains the getGid() function
The nodul e | oadObj, which is a private subroutine of a GRIB decoder, is placed

in the /grib subdirectory which holds all the private nodules of the GRIB
decoder application

June 2001
Table 2.2-1, cont.
[awi ps/ dev/ devel op/ src/ gri b/l oadj.c - contains the | oadOhj () function
Al the non-utility (private) nodul es of an application shall reside under the
master directory for the application. For large or conplex applications, as
many additional subdirectories as needed in order to organi ze the code may be
defined under the master directory.

3.1.4 Synbol Nanes and Restrictions

Public Synbols (Variables, Constants, and Preprocessor Macros)

Public synbols are often declared as "extern" synbols in C, and declared in
COMWON bl ocks in FORTRAN. The public synbol nam ng convention for AWPS is
adj ectiveNoun for C, and ADJECTI VE_NOUN for FORTRAN. As with APls, the public
designation refers to synbols that are used and known systemw de or in nore
than one application
Exanpl e of C public synbol:
extern int |astToken

Exanpl es of FORTRAN public synbol s:

I NTEGER LAST_TOKEN
PARAMETER LAST_TOKEN

Excepti ons

The only exception to this nami ng convention is static functions and vari abl es
in C. The prefix g_ notifies everyone of the scope of a C static synbol

C Restrictions

Each | anguage has a list of standard functions provi ded by the standard
libraries. Those nanmes are restricted. Additional standards committees have
notified software devel opers about their intent to use additional synbols (for
exanmple PCSI X and ANSI Q. In addition to a specific list of standard X Qpen
functions and nacros (see Systens |Interfaces and Headers, Volunme 2 of the

X/ Qpen Portability Quide, Issue 4), ANSI Creserves for future use all synbols
begi nning with

nmacr o (doubl e under bar)

[A-Z] nmacr o
E[A-Z| 0- 9] nmacr o
LC [A-Z] nmacr o
SIG_ macr o
SId A-Z] nmacr o
_ function
i s[a-z] function
meni a- z] function
str[a-z] function
to[a-z] function
wes| a- z] function

Table 2.2-1, cont.

In addition to ANSI Crestrictions, POSI X reserves for future use all synbols
that end with the following letters:
t

_MAX

In addition to ANSI Crestrictions, POSI X reserves for future use all synbols
that begin with the following letters:

B[0- 9]
F_

[

LC [A-Z]

I _ (lower case L)
ar_
pw_
sa_
st_
tm
tms_

FORTRAN Restrictions

FORTRAN has a |ist of standard functions provided by the standard libraries,
which are restricted. HP-UX FORTRAN provides a nunber of extensions to the
standard libraries, which shall also be avoided. Refer to the HP FORTRAN 9000
Programmer's Reference, Vols. 1 and 2 for a list of HP FORTRAN i ntrinsics,
utilities, and system functions.

3.1.5 Accommodating Backup/ Fail over: Floating nanmes and addresses

Al software shall be conpatible with MJ Service Quard fail-over procedures
(refer to Section 5.6). This neans that when addressing the data servers and
application servers froma local application, the application process nust
utilize the floating | P address strategi es. These would be accessed by
addressing either the data server (ds-<site>), or either application server
(aslf-<site> or as2f-<site>). In the case of a fail-over each of these
addresses will be mapped to the surviving CPU, and the appropriate packages
will be restarted.

As a result, if the application uses services on the AS or DS that are
protected under MJ Service Quard (e.g., access to D2D datasets on the DS), it
will still be able to transparently access those services if the service's
host machine switches to the designated backup nachine. It does not inply
that the local application itself will be switched to the backup nmachi ne or
restarted if it fails. The application itself will be protected only if it is
set up under MJ Service @Quard, which is an uncommon scenari o.

-4

June 2001

Table 2.2-1, cont.
3.2 High Level Languages

Choi ce of Language

The | anguage that is used for |ocally devel oped software shoul d be based on a
nunber of factors:

1) performance requirenent of application,
2) performance inpact on system

3) frequency of application,

4) use of application.

H gh-1evel (conpiled) |Ianguages are the best choice where perfornmance of the
application or minimzation of systeminpact is an issue. The follow ng
conpi | ed devel opnent | anguages are supported for AWPS: C, C++, and FORTRAN.
The infrastructure developnent is in C or C++. Rendering conponents nay
interface with the X Wndow Systemin C, but may include calls to FORTRAN
subroutines for data processing. File I/Oroutines that are built on the

net CDF APls for creating, reading, or witing netCDF data files may use their
choi ce of the FORTRAN, C, or C++ net CDF APIs.

Al C and C++ code shall be conpiled with the ANSI option.

3.2.1 Allowable C and FORTRAN extensions and features

This section describes a process for bringing | egacy code and new sof t ware
into future versions of AWPS. The information provided in this chapter draws
on the experiences gained fromthe Design, Devel opment, and Testing (DDT)

teans, nminstream design, and prototyping efforts including Pathfinder.

Use of FORTRAN 77 Extensions

The following is a listing of the extensions to FORTRAN 77 that are all owed.
Extensions that are anticipated to be part of the FORTRAN 90 standards are
i ndi cated (FORTRAN 90).

! BLOCK and LABELED DO LOOPS (FORTRAN 90) .

1 CYCLE statenent (FORTRAN 90). The CYCLE statenent is used to control the
execution of DO loops. Wien the statenent appears in a DOloop it causes
the current iteration of the DO loop to be bypassed. The DO | oop resunes
execution at the next index value, for exanple:

DO 100 I CNT = 1, 10
| F (DB_PROD(ICNT).EQ' ') CYCLE
ZONEPRD(1 NUM) = DB_PROD(| CNT)
100 CONTI NUE

DO WH LE (FORTRAN 90). The DO WH LE statenent is |ike the DO statenent
except that the DO WH LE statenent uses a | ogical expression to control
the I oop, for exanple:

DO WHI LE (DB_PROD(| CNT). NE.' '. AND. | CNT. LE. MAXZNE)
NAVE = DB_PROD(| CNT)

June 2001

Table 2.2-1, cont.

ICNT = ICNT + 1
END DO

EXIT (FORTRAN 90). The EXIT staterment is used to control DO | oop
termnation, for exanple:

DO 100 I ONT = 1, 10
NCNT = | ONT + NONT
I F (NONT. GT. MAXNUM) EXI T
JRON(I ONT) = NCNT
100 CONTI NUE

I NCLUDE (FORTRAN 90). The INCLUDE statement allows the conpiler to
i nclude and process subsequent source statenents froma specified file.
Note: $I NCLUDE statenments are not all owed.

I MPLICIT NONE (FORTRAN 90). The IMPLICIT NONE statenent explicitly
reinforces declaration of variable nanes, which helps elimnate typing
errors. Although explicit declaration is encouraged for this purpose,
the FORTRAN convention for inplicit typing shall be foll owed.

SELECT CASE (FORTRAN 90). The CASE statenent allows for execution of a
certain block of code based on the value of an integer, character, or
| ogi cal expression, for exanple:

SELECT CASE (| ELEMENT)
CASE(1)
ELEHDR = ' 12 HR POP
CALL PROCPOP(...)
CASE(2)
ELEHDR = ' TEMP
CALL PROCTEMP(...)
CASE(3)
ELEHDR = ' MXMWN
CALL PROCMKMN(. . .)
END SELECT

Data types *n declarations. Explicit statements such as REAL*8 are
al | oned, when needed. The nornal word | ength should be used when
possi ble. Do not save nenory by using | NTEGER*2.

STRUCTURE and RECORDS. The STRUCTURE st atenent defines the type, size,
and | ayout of a structure's fields and assigns a nane to the structure.
RECORDS of the structure can then be declared. They allow the reading of
tenporary flat files and help to avoid excessively long argunent |ists,
whi ch detract fromcode readability. M smatched argunent lists are a
frequent source of bugs. However, this is another |evel of abstraction
and shoul d be used only when needed. One exanple of when it is needed
woul d be a long call sequence that is used nany tinmes. Use of this call
sequence only once does not justify a structure. An exanple of the
structure statenent is as follows:

STRUCTURE / EFPC_S/

June 2001

Table 2.2-1, cont.

CHARACTER *3 STATLI ST(MAXSTA)
| NTEGER ELEWARML2Z(21)
| NTEGER ELECOLD12Z(21)

END STRUCTURE

ALLOCATABLE, ALLCCATE, and DEALLOCATE statenents. These statenents allow
dynam ¢ nenory allocation and deal | ocati on.

Intrinsic functions. A lowable intrinsic functions that are FORTRAN 77
extensions are as follows:

- Bit manipulation - BTEST, IAND, IBCLR, IBITS, IBSET, IEOR |OR |SHFT,
I SHFTC, | XOR, SHFT, MVBITS, NOI, RSHFT, XOR, ZEXT

- HP-UX systemintrinsic - GETARG GETENV, |ARGC, | CGETARG

- M scell aneous - S| ZECF

Note: Because we are using the generic form the variables used can be
of different types (that is, type coercion of intrinsic argunents).

For nore information, see the HP FORTRAN 9000 Progranmer's Qui de, Chapter
14.

Vari abl e and subroutines nanes greater than 6 characters (FORTRAN 90).
The limt is 31 characters.

Underscore characters in variable and subrouti ne nanme (FORTRAN 90).
$ signs in character names are not all owed.

Cctal and Hexadeci mal Constants. These constraints shoul d be used where
they are definitely preferable to decinmal for understandability.

Vector Library functions. These functions are allowed when they are
adopted to inmprove perfornmance and shoul d be isol ated when possible. For
nore informati on see the HP FORTRAN 9000 Programmer's Quide, Chapter 16.

Character and Noncharacter data itens can share the sane storage space
t hrough the EQU VALENCE st at ement (FORTRAN 90).

*RETURN. Al though the alternate return is part of FORTRAN 77, it should
be used sparingly.

WHATSTR. Al though not a FORTRAN 77 extension issue, this is necessary
Source Code Control System (SCCS) information, for exanple:

CHARACTER* 100 WHATSTR
WHATSTR = "+[-] 94

List directed internal input or output, for exanple:

CHARACTER*20 C
WRI TE (C *) 1,J,K

FORTRAN Ext ensions That Are Not Al |l owed

June 2001

Table 2.2-1, cont.

! Dangling coments (FORTRAN 90). Dangling comments are comments at the
end of aline follow ng an !

ALIAS. The ALIAS statenent provides a way to direct the conpiler to use
the appropri ate paraneter passing convention to comunicate with routines
witten in other high-level |anguages such as C A workaround is to use
the + u conpiler flag and pass everything as a reference. See the HP
FORTRAN 9000 Programmer's Quide, page 19-29 for nore information

Automatic array declarati on (FORTRAN 90).

BYTE and DOUBLE PRECI SI ON data type decl arati ons

Dol lar sign ($) characters in variable and subroutine nanes (FORTRAN 90).

Lower case characters in a user-defined nane (FORTRAN 90).

TAB character formatting

Data initialization in a TYPE statenent. A TYPE statenent cannot be used
to assign initial values to declared variabl es

Alternative interpretation of logical variables. FErrors such as "M xed
data type assignnents with logical variables,"” "Conparison of |ogica
variables in a equation,"” and "Arithretic operations on |ogical variable"
are not all owed.

Automatic character strings. Automatic character strings are character
vari abl es whose length is specified using a nonconstant, for exanple:

SUBROUTI NE A(C, L)
CHARACTER*L C

These strings are used to inplenent the socket connection between | QW
routines.

The WAL and YREF st atenents.

ON statenent. The ON statenent specifies the action to be taken after
t he subsequent interruptions of a programs execution and allows for
trapping interrupts. No other signaling nechanisnms are avail abl e.

3.2.2 Inter-Language Communi cation

Conpl i cations arise when conpiling and |inking prograns conposed of source and
obj ect nodules in different |anguages, for instance, calling a C function from
a FORTRAN program The nost common probl ens encountered when calling routines
of another |anguage are summarized in the follow ng paragraph. Refer to the
Programmer's Qui des for additional guidance.

Using C Functions in FORTRAN Subroutines and Vice Versa

For applications that nmust mx C or C++ with FORTRAN, renenber that FORTRAN
passes variables by reference, and C C++ passes vari ables by value. Al so

-8

June 2001

Table 2.2-1, cont.

FORTRAN uses colum-najor for matrices, while C and C++ use row maj or.
Character strings in Care null-terminated, while in FORTRAN they are not
explicitly null-terminated. Al so, in FORTRAN, strings are represented as a
string descriptor conposed of an address and a | ength by value. The
Programmer's Qui des gi ve suggestions or passing character strings between

C C++ and FORTRAN.

Certain other restrictions apply when using C++ conpiled code in a mx with
FORTRAN routines, even if the mxed routines are all C. The top level or nain
routine must be witten in C++ or C when conpiling and linking with the C++
conpiler. Al FORTRAN subroutines called fromcode conpiled by the C++
conpi l er must be declared in a header file and be preceded by 'extern "C'' to
prevent nanme nmangling by the conpiler. Any header files which do not have
this nust be wapped by "extern "C' {<headerfile.h>}' when they are included.
FORTRAN | i braries, such as 'vec' and 'U77', will need to have their paths
explicitly defined when including themin your load |ist.

3.2.3 Source Code Conpilation

Two hi gh-1evel |anguage conpilers are provided with AWPS in support of |oca
applications devel opnent: the HP FORTRAN conpiler, and the HP ANSI C
conpiler. Both the FORTRAN and C conpilers are capable of conpiling code
under the respective ANSI standards.

Begi nning with Release 5.0, several of the G\U famly of freeware conpilers
are provided. Currently, both the gnu C and gnu C++ conpilers are delivered
and installed in /opt/gcc. The version of gcc used on AWPS is 2.95.2
Oficial docunentation is limted but nany websites and user groups are
avail able to |l earn nore about GNU and gcc.

3.2.3.1 To conpile C code under the gnu C++ conpiler

Reser ved.

3.2.3.2 Conpiler Flags

On nost of the systens, ANSI Cis delivered. It is nore efficient than other

options because it is preconpiled and can be optimzed for the platform Wen
using C, there are optimzation flags that are recommended. To determ ne the

nodel of the server or workstation on which you intend to run your software,
type "unanme -nf. Use Table 3.2.3.2-1 to determ ne the nodel

June 2001

Table 2.2-1, cont.

Table 3.2.3.2-1.

Server and Workstation Mdel s

Al WKs 9000/ 770 J210
DS 9000/ 819 K200

9000/ 859 K220

9000/ 861 D370

9000/ 871 D370

9000/ 820 D380

AS 9000/ 809 K100

9000/ 821 D350

9000/ 861 D370

Wien conpiling use the followi ng flags: +DAMbdel +DSMbdel

+DSD380) If you want to nake it so that your software will

in the man page for "cc".

3.2.4 X-Wndows System Libraries

The X libraries are installed on the systens and are avail able for conpiling
X references that
may be useful. Sone of these were included as system docunentati on:

code into either C or C++ applications.

X'ib docurentation for C Language X Interface information

HP XLI B EXTENSI ONS

There are several

HP XLI B PROGRAMM NG MANUAL VOL 1
HP XLI B REFERENCE MANUAL VOL 2

X Tool kit Intrinsics docunmentation for C Language Interface

nformation

HP X TOCOLKI T | NTRI NSI CS PROGRAMM NG MANUAL VOL 4
HP X TOCOLKI T | NTRI NSI CS REFERENCE MANUAL VOL 5
HP X W NDOW SYSTEM C QUI CK REFERENCE

The | atest HP docunentation may be found at the foll ow ng Wb Iinks:

Contents of the HP-UX 10.* (June 1999) Collection
http://docs. hp. com dynaweb/ hpux10/ @=xneric__Col | ecti onVi ew

Contents of Devel opment Tools & Distributed Conputing Col |l ection
http://docs. hp. com 80/ dynaweb/ hpux10/ dt dcenOa/ @=xneri c__Col | ecti onVi ew

Usi ng the X Wndow System

http://docs. hp. com 80/ dynaweb/ hpux10/ dt dcenOa/ b696/ @=xneri c__BookVi ew

X Wndow System C Qui ck Reference Cuide

-10

run on any of the
platforns use +DAportable instead. This information is docunmented in detail

Optimzation is upward conpati bl e but not backward.
Code optimzed to run on a D series will not run on a Kor J series platform

June 2001

Table 2.2-1, cont.

http://docs. hp. com 80/ dynaweb/ hpux10/ dt dcenOa/ b670/ @zeneri c__BookVi ew
3.3 Scripting Languages

3.3.1 Tcl/Tk

Tcl/Tk is the current |anguage used for nost of the user interfaces. See the
Sof tware Engi neering Wrking Goup (SWEG Freeware Page for the |atest
information on public domain software for AWPS Rel eases 4.3,5.0,5.1.1 and
proposed for 5.1.2. Tcl is an interpretive tool command | anguage with
additional utilities for scripting. Tk is the tool kit used by D 2D for
creating graphical interfaces (w ndows, w dgets, etc.). Since Tcl is an
enbeddabl e |1 anguage, it is not dependent on systemresources (doing ps's,
etc.) like Perl is.

Tcl/Tk tends to utilize its own version of utilities, rather than the systens

utilities (e.g., Tcl has its own sorting utility). In many cases, a C program
m ght suffice in application devel opnent, but it would require the devel oper
to wite hundreds of lines of code conpared to a single Tcl line. Tcl can

spawn children, as the user can use the "exec" command, but otherw se the
versi ons seemto be sel f-contained.

Tcl may not performas well as other nethods. The run-tine applicati on nay
not be as efficient as a C application, but the required devel opnent tine for
Tcl applications may be much less than that for C programming. |In one test,
an application was witten in Tcl by a good Tcl programmer in 10-20% of the
tine it took for the sane devel oper, also an expert C programmer, to wite the
programin C.

For applications with the following attributes, it nakes sense to use a
scripting | anguage such as Tcl/ Tk:

the main task of the application is to integrate and coordinate a set
of existing conponents or applications,
the application nust nanipulate a variety of different things,
it must have a graphical user interface
the application does a lot of string processing
the functionality of the application will evolve rapidly over tine,
the application is easy to extend and custom ze in the field
the application nmust run on a diverse set of platforns.

On the other hand, for applications with the following attributes it nakes
nore sense to use a conpiled progranm ng | anguage for the application

the application inplenents conplex algorithnms and data structures,
execution speed is critical (e.g., the application nust frequently
scan datasets with tens of thousands of elenents),
the functions of the application are well defined and sl ow to change

More informati on on Tcl/ Tk can be found at:

http://ww. scriptics.com products/tcltk/

-11

June 2001

Table 2.2-1, cont.
3.3.2 Shell Scripts

For nost purposes, it is recommended that shell or Perl scripts not be used to
i npl enent operational prograns. Because scripts require nore conputing
overhead and take | onger to execute than simlar conpiled prograns, their use
needs to be evaluated on a case-by-case basis. Several factors need to be
considered to decide if scripts should be used or not: frequency of

execution, load on the systemcaused by the program and priority of execution
of the program If all or a conbination of these factors is high then scripts
may not be the right choice for this program Sonme exanpl es of when script
shoul d be used are: to start or stop other processes (daenmon processes),
installation prograns, initialization prograns, |ocalization prograns, rapid
prototyping, or progranms that don't get executed often (e.g., not nore often
than once every ten mnutes).

Over the evolution of the prototype to the AWPS basel ine, a nunber of script-
based applications have been rewitten into conpiled C or C++ and the positive

i npact system has been phenonenal. For instance, the purgeAl | Redbook scri pt
in R4.1 takes 14 mnutes to run, uses an average of 60%of the CPU and is
responsi bl e for approxi mately 7000 processes to be executed. In R4.2, this

process was included in the C |language naster_purge that purges everything
(including the Redbook now) in |less than two m nutes.

Scripts have their place, however. Start and stop scripts, initialization
scripts, installation scripts, and one-shot applications are K as is the use
of scripts for rapid prototypes. However if an application is expected to run
on a cycle, or if the frequency of the application is suspect, conpiled

| anguages are faster and al so kinder to the system

3.4 Environnment Variabl es

Envi ronnent variables are a way of setting and passi ng environment information
fromthe Unix shell to processes and subshells under it. Environnent
variables in HP-UX are discussed in a general fashion in Chapter 11 of the
manual Using HP-UX. The manner in which environment variables are set and
used depends on the shell that you are using. See the entries for the
commands csh, ksh, or sh in HP-UX Reference, Volune 1. Depending on how a
local software application interfaces with AWPS conponents, it nay be
necessary for the application process to determ ne and use the val ue of
environnent vari abl es defined for one or nore of the AWPS subsystens (e.g.
D2D, | FP, WHFS).

Anong ot her purposes, environnent variables are used in D2D to set the
locations of master directories for neteorol ogi cal datasets and system
specific datasets, and to configure the local site. The system environnent
variable that will nost comonly be required for local application devel opnent
is $FXA DATA, which defines the path to the nmeteorol ogical data directories
(e.g., /radar, /satf[ellite], /point/METAR, /point/RAOB, /Gid subdirectories).

Envi ronnent variables for WFO Advanced are defined in the file ~fxa/.environs
and nmay be locally overridden by ~fxa/.environs. hostnane. They are set at
login to the operational account, or can be set by a user by running the
script ./usr/local/fxalreadenv.sh (sh, ksh, or bash), or readenv.csh (csh
tcsh, or zsh) depending on the shell used. The environnent variable

-12

June 2001

Table 2.2-1, cont.

$LOCAL_BIN wi I | be added to the D2D .environs file for Release 4.0. |f the
site creates applications that will tie into either D2D or the D2D di spl ay
(see Section 5.1), then the PATH in $LOCAL_BIN, which is set to

/awi ps/ dev/ bin, assures that the appropriate binary file will be found by D2D.
Keep all local environment variables in the file /aw ps/dev/data/rc. <Sl TE>,
and then source this file upon login. Local environnment variables shall be
narmed <SI TE>_VAR etc

Wiile in the operational account, the nanes and values of all the currently
set environnent variables can be determined fromthe comrand line in the

term nal w ndow using the env coommand (fromthe C shell). It may be necessary
to have the System Manager access the val ues of environnent variables if file
protections do not allow individual users to do so, or if the user is
prevented access to a termnal w ndow fromthe operational account.

The environnent variables for the AWPS conponents will not automatically be
avail abl e to developers in their personal accounts. To use the AWPS
environnent variables in a devel oper account, they or their initializing
scripts nust be either copied to the selected shell's login script for the
devel oper's account, or source’'d or nanually entered at each session

O herwi se, their defined values nust be literally incorporated into the code
or script in which they are to be used, which is an undesirabl e sol ution

3.5 Shared and Archive Libraries

Libraries are files with collections of conpiled object code that can be used
in building a program For exanple, when you want to use the atan2 function
in your C program you can use the function available in the Cconpiler's math
library. To do so, you tell the systemwhere to find the function by
including the math library in your program by using the #i nclude <math. h>
preprocessor directive. You don't have to wite source code or conpile the
atan2 function yoursel f--object code for the function resides in the C nath
library, and it only needs to be |ocated and linked into your programin order
for your programto use it. In a simlar manner, individual devel opers can
create libraries of related, reusable functions, and can use libraries created
by ot hers.

3.5.1 Descriptions

Two types of libraries can exist on HP-UX: archive and shared. The |inking
nmechani smdefines the prinary difference between archive and shared libraries
In the case of an archive library function, a conplete, separate copy of the
referenced function's object code is created and linked with the main
progranmis object code in assenbly of the executable program A program built
of all archive library object code is a conplete, stand-al one executable file

In the case of a shared library, the linker does not |link a copy of the

ref erenced object code into the executable file, it only notes the address

| ocations of where the function can be found. Wen the programis executed, a
dynam c | oader | ooks at the executable to see which shared library routines
are required by the program finds or brings theminto nenory, and bi nds them
to the executable at run tinme. Chapter 2 of the Programmng in HP-UX gives a
description of archive and shared libraries, and tells how to identify whether

-13

June 2001

Table 2.2-1, cont.

alibrary file is archive or shared. Chapter 5 of the same manual descri bes
how to select and incorporate functions fromthese libraries into your code.

Sharing of object code takes place when multiple executing processes

si mul taneously use the same function froma shared library. In this case, the
mul tiple processes all use the sane in-nenmory chunk of machine instructions
("text segnent") for the function, although for each process, there is a
separate set of data ("data segnent") used by the function, which is specific
and unique to the process. The HP-UX operating system autonatically keeps
track of which data segnent bel ongs to which process, and keeps them
separ at ed.

The prinmary advantages of using shared libraries are threefold. First, it
reduces the size of the executabl e programon disk, since the shared portions
of the executable are in the library, not copied and inserted into the
executable as in the case of archive library code. Second, it can reduce the
total size of the executables in nenory, since nultiple processes which refer
to it can share a single machine instruction nmenory segnent relating to the
shared library function. Third, it allows the shared |library portions of the
code to be nodified, reconpiled, and relinked separately, w thout the need to
reconpile and relink the executables that use the library. Any executables
that use the shared library will autonatically see the updated version of the
shared library, which will be attached at run tine.

A di sadvantage of using a shared library is that the executable is not
conplete since it doesn't contain the object code for the library function, so
if the executable is noved to another platform it won't work unless the
shared libraries are also available on the new platform A so, if the shared
library is noved after being linked to a program it nmay not be able to be
found at run tine. Another disadvantage is that since both the shared
libraries and the mai n program nust be accessed separately fromthe disk at
run tine, there is sonme performance overhead at the tine the shared libraries
are accessed and bound to the main program

The way a library function nust be conpiled and its object code noved into a
library differs depending on whether it is to be part of a shared or an
archive library. These details will not be included in this docunment. Refer
to Chapters 3 and 4 of the Programming in HP-UX manual for instructions on
creating archive and shared libraries, respectively. It is worth noting that
you can use a mx of archive and shared libraries in the building of an
executabl e, but for a given library, you can only use one version of the
library, either the shared or the archive version. |[If not otherw se
specified, HP-UX will use the shared version of a library by default if both
types exi st and can be found, although this behavior can be overridden

3.5.2 Recommendations for Use

There are no explicit guidelines or restrictions for or against the use of
shared and archive libraries for local application devel opmrent on AWPS. |If
code portability is of the greatest concern, then it mght be preferable to
use archive libraries exclusively. |If disk and nenory space are critical to
the application, or if large chunks of library code are used sinultaneously by
mul tiple processes, then the use of shared libraries nay be of some benefit.

-14

June 2001

Table 2.2-1, cont.

For nost HP systemlibraries (such as the math library) provi ded under the
HP- UX conpil ers, both an archive and a shared version are generally avail abl e
It is preferable to use the shared versions of systemlibraries wherever

possi ble, since these libraries are likely to be avail able on nost platforns
and portability will not be a large issue. To mnimze the possibility of
configurati on nanagenent and di sk storage probl ens, only one version of a new,
user-witten library shall be created. For AWPS systemlibraries, the
existing version of the library shall be used (any other option will be

nonexi stent w thout access to the source and the proper conpiler) and that no
addi tional versions of AWPS systemlibraries be created on-site

3.6 FError Logging and User Notification

Error logging is called for cases where the devel oper wi shes to performerror
reporting fromwithin the application, either as a result of interna
application error checks, or fromrecei pt of a non-success status val ue
returned froma called function. Error logging information, by definition
gets witten into an error |l og which can be reviewed at a later tinme, or it
may be able to be automatically redirected to sone other destination within
the system The typical external destination for critical errors that need
imediate attention is the Network Control Facility (NCF).

The types of conditions that should typically result in calls to standard
error logging APls include detection of:

1 systemor application errors that require sone attention by the devel oper
or maintainer of the code, where the error information is useful for
debuggi ng, and

critical systemwarning or failure situations that need the attention of
the System Manager or the NCF. Such situations may al so require

i mredi ate user notifications to the user or System Manager. These
conditions are not likely to be known to, or of concern to, the loca

sof tware developer. Since the NCF is not responsible for, |oca
applications devel opnent, |ocal developers nust not log errors in their
applications using options that would result in notifications to the NCF

Di agnostics are generated and reported for the benefit of software devel opers
and nmi ntenance personnel. The sinplest diagnostics are print statenents
within the code. Diagnostics are part of the devel opnent process but not
neant for the operational code. They are renoved fromthe source code or

di sabl ed through conditional conpilation when the rel ease version of the
software i s prepared

Indi vidual |ines of code can be nmarked for conditional conpilation in HP
FORTRAN by placing a Din Colum 1 of the statenent. See Chapter 4,
"Debuggi ng FORTRAN Prograns,"” of the HP FORTRAN 9000 Progranmer's Quide for an
expl anation and exanpl e on the use of the -D conditional conpilation option of
the FORTRAN f 77 conpiler.

In C, the #i fdef BUG CHECK and #endif directives nmust be used to block off one
or nore sections of code for conditional conpilation. The bl ocked section(s)
of code is (are) included or ignored by the conpiler dependi ng on whether or
not the synbol (called BUG CHECK in this exanple) has been defined with a

-15

June 2001

Table 2.2-1, cont.

#define definition. To turn off (on) the conditional conpilation of the
bl ocked code, renove (add) the #define BUG CHECK definition from(to) the
sour ce code.

User notification calls are nade when status or error nmessages or

informational data are to be inmmediately displayed to the user when a detected
condition or error occurs. Situations in which user notification is perfornmed
are those cases where the code is working properly, but the user may need to
take sone corrective action (e.g., "Too Many Qpen Wndows, d ose A Wndow and
Try Again"), or needs to be inforned or warned about a tenporary situation
that prevents a request frombeing fulfilled (e.g., "Requested Data Not
Avai l abl e", or "File Locked By Another User").

CQurrent APls

June 2001

Since the WWGs and RFCs do not typically have access to AWPS source code
or the C++ conpiler, it is not possible to use the APIs described below in
| ocal applications devel opnent. The descriptions are included in

antici pation of devel opnent of a set of generic APls usable in |oca
applications.

Error logging APls exist for both D2Dintegrated and non-D2D-i nt egrat ed
applications. The D2D-integrated error logging APl is a C++ class called
LogSt ream

The non-D2D error logging APls are called hnmHMJ | ogError (C | anguage) and

HM HMJ LOG ERRCOR (FORTRAN). These non-integrated APl s provide a consi stent
binding to a | ower-1level APlI, which may be changing. Their calling sequences
are described in a nanual page

A user notification APl currently exists only for integrated D2D applications
The user notification APl is a C++ class called Announcer. Wen and if it
becones possible to use this APl fromlocal applications, it will be
docunented in the AIFM

Locati on _and Mintenance of Error Logs

AW PS hosts al ready have established |ogging directories that nay be used by
| ocal applications keeping in mnd the follow ng:

1. Daily server log directories |ocated under /data/l ogs/fxa/ YYMVDD (e.qg.
/ dat a/ | ogs/ f xa/ 990801) al ready exi st.

2. Persistent processes (those that run continuously once initiated) that
create logs in (1) nmust ensure logs are broken at the start of a new day
so proper purging can take place (logStreammay be available to sites in
the future).

3. Operational |ogs should contain the m nimumanount of infornation
necessary; i.e., turn debug off.

4. Include tinmestanps and easily traceable filenanmes, PILs or WMO headers so
data can be tracked through system when troubl eshooting

5. Report success and failure of process

-16

Table 2.2-1, cont.

6. For non-persistent processes, use append to add |logging information to
existing logs. Do not create nultitudes of snall |ogs; they nake
navi gating |l og directories cunbersone.

7. Error logging in local application directories can also be acconplished
if care is taken. |If log breaking and purgi ng using existing
infrastructure is not feasible it is necessary to explore other
approaches including using the log file size as a neasure of when to
break the log. For instance, filenane.log is noved to filenane.log.old
when a certain size is reached and the newlog is witten to. In this
case only filenane.log and filenane.log.old ever exist, so purging is not
necessary and di sk space usage i s known.

3.7 Internal Docunentation

The guidelines for internal docunentati on of |ocally-devel oped FORTRAN, C, and
C++ source code are the sane as those used by the central AWPS software

devel opnent teans. These guidelines are docunented fully in Attachment 1
(FORTRAN), Attachnment 2 (C code), and Attachnent 3 (C++ code), and the reader
is referred to themfor details. A fewitens will be discussed in an
introductory manner in the follow ng sections

3.7.1 Prologues and Source Control

Pr ol ogues

Tenpl ates for prol ogues (al so sonetinmes called headings) for files, functions
prograns and subroutines are shown in the attached FORTRAN and T C++

devel opnent guidelines. 1t is recoommended that these tenplates be used for
all new source code devel opnent, with nodifications as appropriate. If a
tenpl ate other than these standard AWPS guidelines is used, then it shall at
| east be consistent for all the new nodul es nmaki ng up the application, and
shall contain the sane information as the AWPS standard

Exi sting (legacy) code fromother systens, packages, or applications are often
m xed and used in the devel opnent of new applications. |f these outside
sources of code are historically reliable and well-structured but are poorly
docunented, then it is a judgenent call as to whether to use themas-is, or to

try to inprove their docunmentation. It is expected that existing code nodul es
froma given source or package used in devel opnent of a new application shal
at | east be docunented consistently within the package. |If practical, and

especially if the |l egacy code is being nodified for use with a new
application, existing code shall be upgraded to be consistent with the new
appl i cation nodul es.

Sour ce Code Control

HP- UX provi des the SCCS (Source Code Control Systenm) utility as part of the
operating systemsoftware. Background and instruction of use of SCCS are
described in Chapter 14 of the HP nanual Programm ng on HP-UX. Additiona
freeware packages, RCS (Revision Control System) and BCS (Baseline
Configuration Systen), are available for use by local developers. Al these
packages have been used successfully by different devel opnent organi zations in
controlling versions of national AWPS software. Any local application

devel opnent effort of significant size or which involves nmultiple devel opers

-17

June 2001

Table 2.2-1, cont.

shoul d use a version control package to nanage onsite application devel opnent.
The advantages of a source code control system generally outweigh the costs of
| earning how to use the system

The followi ng description refers to use of SCCS keywords, and how they rel ate
to source code prol ogues.

Source code control infornmation about a nodule (e.g., revision nunber, data,
or tine; current time on retrieval, etc.) can be included in the source file
by pl acenent of keywords into the source file. |D keywords are "codes" that
are typically placed in the prol ogue of the source nodule, either inside
comrent bl ocks or assigned to variables, as appropriate to the type of nodul e
(see "Where to Put ID Keywords" in Chapter 14 of Programm ng on HP-UX). The
keywords are automatically expanded (replaced with up-to-date values of their
particular information, in plain-language) by the source code control system
when the file is retrieved for anything other than editing. Then the what
command can be used to access the keyword expanded val ues fromthe source

obj ect, or executable files.

3.7.2 Header Files and Locations

Header files are typically used to hold declarations referred to in multiple
source nodul es, and prototypes for functions used in nore than one nodul e.
Header files specific to a nodule or function shall be naned the sane as the
filenanme of the nodule, except with the .h (for G C++) or .H (for FORTRAN
file extension. Essentially, every function used nore than once shall have an
associ ated header file containing both the function prototype and decl arations
used outside the nodule. Note that all C functions shall have prototypes
defining all argunents in order to reduce the possibility of errors in their
usage, and to neet the ANSI C standard. Constants used thoughout an
application, package, or systemshall also reside in a header file with a
descriptive nane, e.g. thernmo_consts.h for thernodynam c constants used by the
utilities in a thermodynamic variable conputation library. Header files shal
contai n no executabl e code.

Header files shall reside in the same subdirectory as their associ ated source
code nodul e(s), and shall be placed under source code control the sane as
source files containing the executable code. Refer to Chapters 7 and 8 of the
MDOL C Software |nplenentation Conventions for detail ed guidelines on header
files, functions, and their organi zati on. FORTRAN programers shall follow
the same set of header file guidelines for those | anguage features that are in
common with C

3.7.3 Standard Header Files

ANSI standard header files such as limts.h, float.h, and stddef.h contain
definitions which support the portability of the resulting code in which they
are used, and shall be used (along with others as needed) in all C and C++
applications. Note that with the new ANSI standard for C++, the extensions
for the prinmary standard header files for C and C++ nmay change (C or be
dropped al together (C++), although the old .h extensions should still be
supported for C as secondary header files. Refer to the HP C++ | anguage
docunent ati on provided with the HP aC++ conpil er package (reference titles not
avail able at the tinme of this witing).

-18

June 2001

Table 2.2-1, cont.
3.8 External Docunentation

The requirenents for external docunentation of a |ocal application are driven
by the need to: (1) support the continued naintenance of the application; (2)
assess potential conflict areas with core software; (3) provide a reference
for the NCF to use when troubl eshooting issues that nay arise at a site; (4)
identify applications that could be affected by future builds, and (5)
facilitate the sharing of local applications within regions and nation wi de.

To satisfy these needs, the AWPS | ocal application external docunentation
shall include the follow ng:

e Local Application Registration (LAR) information. The LAR information is
submitted to the Local Application Database and nmust be subnitted by the
devel oper before an application can be registered for use by a site. The

LAR i ncl udes:

S application description (e.g., name, version, |anguage)

S software inventory (source code, header files, data files),

S interfaces with AWPS data files and dat abases

S external connections (e.g., LDAD),

S runtinme signature information (e.g., host machines, CPU, disk usage,
conmuni cati ons),

S perfornance/ systemresource information, and

S reference information (e.g., maintenance programrer).

Note: This information is required for all applications covered under the
AW PS Local Applications Policy (NWS 2000).

For applications that generate products covered by national policy or
standards, a sanple output shall be provided to the LAWG OM
representative for consultation to ensure it neets the nationa

st andar ds.

e Wser information. Information needed to allow another user at the
originating site or another location to effectively run the |oca
application. The user information includes:

S instructions for configuring the application*,
S running the application and recovering fromerrors, and
S mintaining (e.g., purge, clean-up) the application*.

Note: A ‘*’ indicates that this information is required if a site has
agreed to share its application with other sites.

e Installation information. Information need to allow another user install
a local application. The installation information includes:

S makefiles and/or instructions for conpiling/linking executables,
S application environnental information, and
S installation procedures

Note: This information is only required if a site has agreed to share
its application with other sites.

-19

June 2001

Table 2.2-1, cont.

e Mintenance information. Additional information needed to allow for the
conti nued mai ntenance of the application by soneone other than the
originator of the application. This infornation includes:

S design information, including data flows,

S scientific fornulas and mathenmatical al gorithns,

- testing information (e.g., procedures, data), and

S an application history including enhancements and known sof t ware
defi ci enci es.

Refer to Appendix 4 for a detailed description of the |ocal
requirenents for AWPS external docunentation.

application

3.9 Input, Qutput, Dsplay, and Printing
This section is not neant to be a tutorial
(X), soit will only sumarize the required details about the devices,
utilities, and options. Table 1.3-1 lists the 1/0O devices avail able on
specific hosts on the WFO and RFC AWPS. Access to these devices is
controlled by the systemsetup and configuration. Details of the default
setup of each of these devices is summarized in Table 3.9-1. You nay need to
contact your System Manager for specific information if your site setup varies

fromthe initial AWPS configuration.

on Unix I/O or the X Wndow System

June 2001

Table 3.9-1. Input and output device configurations on AWPS. In the table
entries, XXX stands for the 3-character station ID of the WFQ RFC site.
I/ O DEVI CE HOST NAME SETUP
Col or ws1- XXX, ws2- XXX, ws1- XXX: 0. 0,
G aphi cs W3- XXX, ws4- XXX, ws1l- XXX: 0.1
Moni t or ws5- XXX Ce
ws5- XXX: 0. 0,

xt 1- XXX, xt 2- XXX, ws5- XXX: 0. 1

Xt 3- XXX, xt 4- XXX,

xt 5- XXX xt 1- XXX: 0. 0,

xt 5- XXX: 0.0

CD- ROM ws?
DAT DS (physi cal Each W5, DS, AS
Aut ol oader connecti ons) configured under
Tape Backup Qmi Back
B&W Laser LAN | p1_XXX
Printer (PCL,
Post scri pt)
H gh Speed LAN | p3_XXX RFC only
Laser Printer
(PCL,
Post scri pt)

-20

June 2001

Table 2.2-1, cont.

I/ O DEVI CE HOST NAME SETUP

Col or Inkj et LAN | p2_ XXX
Printer (PCL,
Post scri pt)

Internal Disk DS for | ocal under /awi ps/dev NFS rount ed
St or age appl i cations

Ext ernal Mass As configured As confi gured Portabl e, host is
St orage (DAT as configured
drive)

Col or _Resource Conflicts in X

If you are running an application under the X Wndow Systemon the sane host
that is running D2D, ADAP2T, NWBRFS, or the Text Wrkstation, then your
application nmust share the color resources of the X server. |[If the colors
that your X application requires are not to be found in the default col ormap
in use in the AWPS applications, then the likelihood exists of having a col or
resource conflict between your application's private colornmap and the AWPS
packages. X application programrers should be aware of these potentia
problens and their effects, and proceed with caution. A detailed discussion
of color issues in X are beyond the scope of this docunent, however, sone
practical guidelines which apply are given bel ow.

If devel opers are creating applications which will utilize the X color tables,
then they shall request colors in the 'shared' node, or 'read only' node.

This will allow applications to share the color table. Creating color tables
in the "unshared', or 'read/wite' node nay create a conflict with other
applications. In this case unpredictable events nmay occur on the display.
There is no formal policy on use or control of X color resources between |ocal
applications and AWPS basel i ne applications. However, applications which
have the potential for national inplenentation shall be devel oped so as not to
have color conflicts with the AWPS default col or naps.

These gui delines address output to a workstation display. Describing howto
create new D2D depictables (integrated displays in D2D) is out of the scope of
the AIFM Local software devel opers should use Tcl/Tk or X to develop their
own user interfaces and display wi ndows for their applications.

Printing and Printers

Printing text files on AWPS is a relatively trivial matter and | ocal
applications have been witten to print fromAWPS. The |Ip comand can be
used, with options, to send a text file to the printer of choice. |If the CDE
Text Editor is used, there is a Print option in the File menu which will print
the contents of the open text file in the editor.

The sinplest way of printing the graphical contents of a screen or w ndow on
AWPS is to use the standard utilities xwd, xwud, and xpr that HP-UX provides
for X wi ndow screen capture, display, and printfile preparation, respectively.
xwd captures the contents of a selected window and wites it into a user-

-21

Table 2.2-1, cont.

speci fied X window dunp file. xwid redisplays the contents of the captured
dunmp file in a new wi ndow on the screen, which is a useful tool for visually
val i dati ng what you have captured in xwd before sending it to the printer

xpr takes an X wi ndow dunp file and formats it for printing on a sel ected
printer or printfile format (e.g., postscript) according to user-specified
options. The last step in printing an xwd dunp is to send the xpr output file
to the printer queue with the | p command

The dunp files can be prepared for printing in color on the HP DeskJet 1600
printer by using the xpr options as foll ows:

xpr -device dj 1200 -output <outfile> <infile>

X wi ndow dunps can al so be printed in black-and-white on the laser printer
using -device ljet, but the results are unpredictable if the captured inmage
has a lot of colors or gray shades. The nunber of gray shades in the printed
output for the laser printer is controlled by the -gray n option of xpr, where
n ranges from2 to 4. If n=3, approximately nine gray shades will result. |If
n=4, then the nunber of discernable gray shades will be about 15. The naxi mum
wi ndow si ze of the xwd captured i nage that can be printed on the LaserJet 4
without clipping, with the option -gray 4, is 600x787. Both xwd dunp files
and xpr output print files can be quite |arge depending on the options used
and the size of the captured window, so it is inportant to delete the files
(especially the usually-larger print files) once they are no | onger needed.

Since both the LaserJet and DeskJet printers are postscript-capable as
configured in AWPS, ps (postscript) can be used as the print device option in
xpr. Postscript files produced by xpr can al so be exported from AWPS for
printing on any other postscript printers (see the discussion of the CDE

I mageVi ew tool, below, for other graphic file export options). It should be
noted that the postscript option results in a much larger printfile than the
devi ce-specific (PCL) options, yields no noticeable difference in the printed
quality, and only produces bl ack-and-white output on the color printer.

The X wi ndow dunp utilities and I p can be run fromthe Uni x command |ine, and
Uni x man pages exi st that describe the options and capabilities of each
utility. CDE also provides Action icons naned Xwd Capture and Xwd Di spl ay
which run the utilities xwd and xwud. These icons are |ocated in the Desktop
Tool s subrmenu under the Applications Manager nmenu in the standard CDE setup
No correspondi ng CDE Action icons exist for printing. However, by using xpr
and I p with predefined options, a set of CDE Actions could easily be created
to print X window dunp files to each available printer. Wth alittle nore
ingenuity, the entire process of capturing a screen, printing the data, and
cleaning up the internediate files could be conbined into a single Action or
nacr o

Besi des Xwd Capture, CDE al so provi des another tool, Capture Screen, for
capturing a window or a screen. It is located in the Digital Mdia subnenu
under the Applications Manager menu in the standard CDE setup. Capture Screen
inmproves on Xwd Capture in that it allows the screen dunp to be saved directly
into one of several graphical image file formats, including xwd. The too

I mageVi ew, in the same subnenu, provides for display and nmani pul ati on of nany
types of existing graphic or inage files (e.g., TIFF, PCX, XW, A F), as wel
as conversion of the files fromone format to another. Wth |InageView, xwd

-22

June 2001

Table 2.2-1, cont.

dunmp files can be converted to standard graphics file formats for inclusion as
graphical figures in word processing applications, or for display by other
image rendering or printing applications. InageView also provides the
capability to nodify the brightness and contrast of the captured inmage/ graphic
data. |If the tools and printers are properly set up, printing can be done
directly fromPrint option of the InageView File nenu. On-line help is
available fromw thin CDE for all these tools.

-23

June 2001

June 2001

4.0 Data Management and Access

Mot products from the SBN are initidly placed in raw directories, with the exception of most text
prOdUCtS Products fromthe SBN are initially placed in /raw directories. The
Decoders then typically read them process them and delete the raw version.
Sites that choose to do this should carefully select specific headers and

avoi d using w | dcards since the overhead of witing these data to di sk can
affect overall systemperformance If the input requirenent is for the raw
product, the best way to acconmopdate this is to nodify acq_patterns.txt file
to direct the acquisition server to store the product into a locally defined
directory. Fromthis directory a |local application could process the product
and not have to contend with the baseline decoders that will delete the raw
product . CAUTION: This directory could growinfinitely to fill the partition
that it is in, so much care is required to assure that the directory is kept
purged. There is discussion on purging of directories in the section 4.1.9 of
t hese gui del i nes.

4.1 Data Storage/ Access Packages (updated to Build 4.3)

Met eor ol ogi cal and hydrol ogi cal data are stored in a nultitude of nanners and
formats on AWPS, but can be categorized into four main groups:

flat files (Unix text and binary files of various formats),

Net CDF (network Common Data Form) files (flat files of a common fornat,
with user-defined data contents and data types),

plotfiles (binary flat files of specific format and content for rendering
by D2D depi ctabl es), and

Inform x rel ati onal database tables.

Each conbi nati on of data source and type is considered a separate data cl ass.
Sone data classes are stored in multiple formats in both raw and decoded form
to support different applications on AWPS. A summary of data storage nethods
and data formats for each of the existing AWPS data classes is presented in
Tabl e 4.1-1.

Table 4.1-1 Storage formats and nethods for the current classes of AWPS

Note: According to current plans, by AWPS Build 5 all existing plotfile
storage of decoded hydroneteorol ogical data will be elimnated and repl aced
by net CDF.

onl i ne hydr onet eor ol ogi cal data.

UNI X Fil es RDBVS
DATA QLASS Flat File Net CDF Plotfile | nf or mi x DB
NCEP Gri ds Al grids,
decoded

June 2001

UNI X Fil es RDBVB
DATA CLASS Flat File Net CDF Plotfile I nf or mi x DB

VETAR Hourly files. Hourly Files. | ndi vi dual
Mbst decoded Sel ect ed coded METAR
el enents, SI el enent s, reports.
units, both surface pl ot (circular
hourlies and units, st or age,
special s, and hourlies only limted # of
coded METARs hour s)

RAOBs (Build 5) Decoded BUFR Coded ASC |
Decoded BUFR RACB report RACB reports
RACB reports sections

Li ght ni ng Al el enents Al elenments

Wnd Profiler

Al elenents

Al elenents

Maritine Al elenents
LDAD:
- Hydro Al elenents Al elenents
- Mesonet Al elenents N A
- Manual Al elenents N A
WER- 88D One i nage or Al phanuneric
gr aphic and tabul ar
product (see data from
Note 1), one text-only
vol ume scan products or
tine, per included with
file i mges and
graphi cs
GCES | nages Al l
Redbook One coded
G aphi c product, one
valid tine,
per file
Text Products Raw METAR, Sel ect ed AFCS
LDAD, Marine Pl Ls, coded
(See Section (e.g., METAR
4,.2.3) and pl ai n-
text products
ADAP2 T Al (TBD
Digi tal Bui |l d 5+)
Forecasts
BUFR MOS MOL file Raw BUFR
Forecasts system one encoded M3S
nodel , cycle reports
per file (Build 5)
(decoded)
LAMP MOL file
For ecasts system

June 2001

UNI X Files RDBVB
DATA CLASS Flat File Net CDF Plotfile I nf or mi x DB
Verification Archive files Latest 1-2
(data ol der nont hs dat a
than 2 nos)
Site-Specific D2D | CWF
(non- map) | ocal i zation configuration
and ADAP2T data
files
Map Bkgds Binary files,
Shape and BCD
formats

Note 1 to Table 4.1-1: Radar itens of the sanme product type with different
Data Levels, Spatial Resolutions, Vertical Level or El evation Angle, (e.g.,
Base Reflectivity), Center Point (Severe Wather Analysis), or Accumul ation
Peri od (User-Sel ectabl e Precip) are considered different products.

4.1.1 Flat Files

There are currently three primary categories of flat file data storage on
AW PS:

! NetCDF files hold decoded observational data including upper air
soundi ngs and METAR reports; decoded NCEP nodel grids; and renmapped
(locally, or by NESDIS) GOES i mages. NetCDF files can be read and
witten with a common set of net COF APIs.

Binary plot files are in various formats specified by the devel oper of
t he depictabl e code that reads them and generally involve custom access
routines to read (wite) data from(to) them

Radar products received fromthe WSR-88D RPGs are in NEXRAD Level |V
Archive format, also known as the RPGto-PUP fornmat. Except for text
nessages, they are stored exactly as received fromthe RPG with one
recei ved product to a file.

Each of these formats is described briefly in the follow ng sections.
4.1.1.1 NetCDF

A portion of the AWPS data streamis processed by the suite of decoders and
stored within /data/fxa as netCDF files. These can be identified easily as
they are stored in subdirectories named net COF. Local applications can use
these files as input keeping the following in mnd: (1) netCDF files may not
include all raw data, (2) netCDF files will be purged by fxa-data.purge; and
(3) data is already displayable in AWPS. Data for AWPS data cl asses are
stored in netCDF (network Common Data Forn) files are accessed by net COF APIs.
Net CDF provi des a nethod of organizing and storing array-oriented data, such
as nodel grids, inmagery, and sets of METARs, in a "self-describing" file
structure. The software for accessing netCDF files is distributed and

-3

mai ntai ned by Unidata. WO Advanced uses both the C++ and the C versions of
netCDF. A Perl interface for netCDF is available, but is not used in AWPS.

Uni data has published the "Net CDF User's Quide for C' and the “Net CDF User’'s
Qui de for FORTRAN' to describe

the history, devel opnent, and phil osophy of net CDF
the contents, organi zation, and structure of netCDF files; and
the usage of net CDF software (APIS).

These two guides are well witten, and include exanple code. Unidata has al so
publ i shed the “Net COF C++ Interface” as a reference to the C++ classes and

nmet hods used for netCDF file access. Al three publications may be viewed on
the Internet at url “http://ww:. uni data. ucar. edu/ packages/ netcdf”. This web
site also includes a nan page for net COFPerl (the Perl interface for net COF),
and ot her useful docunents.

The details of netCDF files and APls as applied to specific AWPS data cl asses
is presented in the discussion of the various data cl asses.

Net CDF_Ter mi nol ogy Pri ner

Quick definitions of sone key net COF vocabul ary fol | ows:

! attribute: data about data; ancillary data; netadata. Attributes give
information about a specific netCDF variable or, in the case of globa
attributes, about the netCDF file as a whole.

CDL: Common Data form Language. A convenient, readabl e way of
describing or defining netCDF files. CDL is read by the netCDF utility
programncgen to create a new net CDF file.

coordinate variable: a netCDF dinension that is also a net COF variable
A coordinate variable is a physical coordinate that is also used as a
net CDF di nensi on

di mension: used to specify the size of a netCDF array variabl e

global attribute: data about data; ancillary data; netadata. d oba
attributes give information about the netCDF file as a whol e.

primary variable: the data. A netCDF variable that is not a coordinate
variable. The nodel output grids thenselves; the satellite inages
t hemsel ves; the METAR field val ues thensel ves

record dinmension: a netCDF dinension of unlimted size. A netCDF file
can contain at nost one record di nension

record variable: a netCDF variable whose first dinmension (in C, C++ and
Perl) or last dinmension (in FORTRAN) is the record di nension.

unlimted dinension: another nane for record di nension

June 2001

Table 4.1-1,

V' variable:

cont.

scal ar (0-di nensional).

Si x data types are supported by net CDF
enunerated type values in netCDF' s C++ software (in netcdf. hh),
constants in netCDF's C software (in netcdf.h),
FORTRAN software (in netcdf.inc).

an array of values of the sane data type.

Vari abl es may be

These are given nanmes as defined

as #define
and as PARAMETERs in netCDF' s
The nanes and programm ng | anguage

equi valents of the six types and strings are summarized in Table 4.1.1.1-1

Table 4.1.1.1-1.
vari abl e types

Cor respondence bet ween net CDF and progranm ng | anguage

June 2001

net CDF net CDF net CDF net CDF C++ FORTRAN I NFORM X Per |
Ct++ C FORTRAN Per | and C
ncByte NC_BYTE NF_BYTE net CDF: : BYTE unsi gned - i nt eger
char
ncChar NC_CHAR NF_CHAR net CDF: : CHAR char CHARACTER CHAR i nteger
ncDoubl e NC DOUBLE | NF_DOUBLE |[netCDF::DOUBLE [double DOUBLE FLOAT or doubl e
PRECI SI ON DOUBLE
PRECI SI ON
ncFl oat NC_FLQAT NF_FLQOAT net CDF: : FLOAT fl oat REAL REAL or doubl e
SVALLFLCAT
nclLong NC_I NT NF_I NT net CDF: : LONG | ong | NTEGER*4 or]I NTEGER, i nt eger
I NTEGER I NT, or
SERI AL
ncShort NC_SHORT NF_SHORT net CDF: : SHORT short | NTEGER* 2 SNVALLI NT i nteger
array of array of array of array of char * CHARACTER* n string string
ncChar NC_CHAR NF_CHAR net CDF: : CHAR

To use netCDF in C, you nust
net CDF calls or references to net COF pre-defined constants (located in
and link to libnetcdf.a (located in

/usr/1ocal / netcdf-3.4/include),

/usr/local /netcdf-3.4).

To use net CDF in C++, you nust

in /usr/local/netcdf-3.4/include),

/usr/local /netcdf-3.4).

To use net CDF in FORTRAN, you nust
contai ning references to net COF pre-defined constants (located in
/usr/1ocal / netcdf-3.4/include),

/usr/local /netcdf-3.4).

To work in Perl,

#! [usr/ bi n/ perl

the first

i nclude netcdf.h in each source file containing

i ncl ude netcdf.hh in each source file
containing netCDF calls or references to net COF pre-defined constants (| ocated

and link to libnetcdf_c++.a (located in

include netcdf.inc in each source file

and link to libnetcdf.a (located in

line of the Perl

script must be:

Table 4.1-1, cont.

with the “#” being the first character in the line. To use netCDF in the Perl
script, the second |line nmust be “use Net CDF;” (w thout the quotes).

4,1.1.2 Plot Files

Plot files have been replaced with net COF storage for all displayable data
with the exception of lightning data at CONUS sites. For lightning data, both
plot and netcdf files are created.

4.1.1.2.1 Data Keys, Data Access Keys
Def err ed.
4,1.1.3 WBR-88D Radar Products

WBR- 88D products are provided to users in the formof a nessage which contains
two or nore blocks of information. The blocks are: a Message Header bl ock, a
Product Description block (PDB), a Product Synbol ogy bl ock (PSB), a G aphic

Al phanureric Attributes block (GAAB), and a Tabul ar Al phanunerics bl ock (TAB).
A WBR- 88D product data nessage consists of the Message Header, PDB, and one or
nore of the renmining blocks. A WSR-88D product data file contains all of the
bl ocks in the product data message, in the sane order as which they are
transmtted and received. A detailed description of the data bl ocks is beyond
the scope of this docunent. For reference, the block formats are described in
Section 3.5.1.3 of the NEXRAD RPGE Associ ated PUP Interface Control Docunent
(1CD), which is naintained by the NEXRAD Qperational Support Facility (OSF).

The radial or raster inage data and any graphical data are contained in the
PSB. G aphical annotations conprising stormattribute data and provided for
display with inmage data or with special synbols products (e.g., with
nmesocycl one or tornado vortex signature synbols) are contained in the GAAB.
These graphi cal overlays are produced by the RPG only for selected derived
products. Text products and text-only portions of data describi ng WBR- 88D
site-adaptabl e paraneters are contained in the TAB.

I mage data for nost WBR-88D base products and raster- and radi al -fornat
derived products are packed in run length encoded (RLE) format. The run

I ength encoding algorithmtransforns strings of duplicated data values into
(1) a data value, and (2) the nunber of consecutive data points which take
that value. WBR-88D inage data in RLE fornat need to be be unpacked prior to
di spl ay generation or other processing. Unpacking of the RLE data consists of
determ ning the data value and | ength of each RLE segnent, and sequentially
assi gning these data values to the corresponding (length) nunber of bins or
pixels of the full radial or rectilinear data arrays.

Section 4.2.4.4 of this docunent describes the |ocations and functions of
exi sting AWPS routines which unpack the RLE data and extract the product data

contai ned in the individual blocks.

4.1.1.4 Local Data Files

June 2001

AWIPS uses /datalfxa and /datalfxa_|oca to store most basdline data. Rel ease 4.3, a new di sk

partition was provided for site-specific applications and data if dorage

-6

June 2001
Table 4.1-1, cont.

parameters and purging is carefully consdered. . The partition, /data/local, is sized at
990 MB on the shared (mrrored) data volume of the DS. The prinmary purpose of
this partition is for storage of local data acquired via LDAD. The partition

may al so used for other site-specific purposes such as site-devel oped

execut abl es and scripts required for operations. A few notes about

/ datal/l ocal .

1. /data/local resides on the DS shared volume group and is nounted on
all AWPS hosts, which nmakes data access sinple

2. User should have a good idea of average file nunber and size of data
to be stored so adequate purgi ng paraneters can be established prior
to automatically storing data. See section 4.1.9 Purging

3. If /data/local is not used, consideration should be given to the
di stribution method of the data and effects on system GCreating new
nmount points is strongly discouraged.

4.1.2 Informx

Inform x is a Rel ational Database Managenent System (RDBMB). |nform x
contai ns and manages databases; it is not a database itself. Each database
under the Inform x RDBVMS contains a nunber of tables, which contain actua
data. The Inform x Dynam c Server provides user and application access to
several baseline-defined databases in the Inforni x RDBVS

The Inform x Dynam ¢ Server provides six user-created databases in Informx
RDBIVS.
1. fxatext - emulation of the capability provide by AFCS
2. hd2_0Oxxx - supports the hydrol ogic forecasting mssion of the WGs,
and RFCs.
hnmdb - supports the ADAPT applications
scandata - supports the SCAN application
i cwf_xxx - supports the | FPS application
WWa_XXX - supports the Watch/Warni ng/ Advi sory application

ook w

A detail ed discussion of the schena of the databases is beyond the scope of
this manual ; however, there are tools available that allow a user to inspect
t hese schema.

There are two principal ways of accessing table data in any Inform x database
via the dbaccess utility, and via prograns whi ch use Enbedded Structured Query
Language (ESQ.). Both C and FORTRAN ESQ. programmng utilities are provided
with Informx on AWPS. In addition, the AWPS textdb command-line interface
can be used fromthe command line, froma script, or within a programto
access the fxatext database (see Section 4.2.7).

4.1.2.1 The dbaccess utility

The dbaccess utility is an Inform x-provided tool that can be used to access
data el enments fromany database within Inform x. The dbaccess utility is
fully described in the DB-Access User Manual

The nost common use of dbaccess is to interactively browse a database. The
dbaccess utility provides a character-based interface which allows it. It is

-7

Table 4.1-1, cont.

al so possi bl e to nake changes to the schema of a database through dbaccess,
but sites shall not do this to any database other than those that are strictly
local (in other words, schema changes to the text and hydrol ogi c database are
prohi bited).

Anot her way to use dbaccess is to wite a script containing SQL statenents and
submit it directly to dbaccess on the command |ine, rather than having to
tediously type each Structured Query Language (SQ) statenment fromwi thin
dbaccess; consult the manual for the proper syntax.

The final way to use dbaccess is to enbed the comrand-|ine invocation of
dbaccess into a script. This is the approach taken by the trigger mechani sm
which is part of the text database. Consult the script

[awi ps/fxal/inform x/ St oreWNPr oduct.sh for an exanple of howto do this
scripting.

4.1.2.2 Informx ESQ/C

The second najor way of accessing a database is through Inform x ESQ/C.
ESQ./Cis an application-progranmng interface (APl). This APl enables the
devel oper to enbed SQ. statenments directly into a C program This is, by far,
the nost efficient way of accessing the database; drawbacks to this approach
include the requirenment to programin C and to nmaster the |arge nunber of
functions (and their return values) provided by ESQ.. A detailed discussion
is beyond the scope of this appendix; consult the Inform x-provided, two-

vol unme, | nform x-ESQ/C Programer’s Manual .

4,1.2.3 Inform x Dat abases
4,1.2.3.1 Text Product Database

The Text Product Database supports the Text Wrkstation functions on AW PS.
Al incomng and |l ocally-created AFCS and other text products are stored in
tables in the Text Product Database, “fxatext”. The products can be accessed
via AFCS-|i ke commands using their AFOS Product Identifier Labels (PILs), and
can al so be accessed and displayed fromthe Browser nenu of the Text
Wirkstation. WBR-88D associ ated text and text-only products are al so stored
in the Text Product Database and are accessible fromthe Text Wrkstation.
The Text Product Database and its contents are described in Section 4.2.7.

Al read/wite interactions with the text product database shall be handl ed
via the textdb utility (Section 4.2.7.3).

The other Inform x storage of text products is the storage of individual raw
METAR reports in the rpt table of the hnidb database. METARs can be accessed
fromthe rpt table by a conbination of their ICAO station call letters (e.g.
KMZl) “icao_loc_id", type of report (METAR or SPECI) “report_type”, report
datetine “date” (fromthe body of the report), “nom nal” date/hour, and
posting (storage) datetine “origin.” No APls to access this database exist in
the AWPS baseline code installed in the field. Aso, the rpt table is likely
to be elimnated in the Build 5.x time frane as enhancenents are nmade to the

f xat ext dat abase.

4.1.2.3.2 ADARP2T (D gital Forecast) Database

June 2001

Table 4.1-1, cont.

Docunentation of this database is deferred. The data storage mechanisns in
the ongoing transition fromthe Interactive Conputer Wrded Forecast (ICWF)
systemto the Interactive Forecast Preparation System (IFPS) are in a state of
change for Build 5.0.

4.1.2.3.3 Hydrol ogi ¢ Dat abase

The hydrol ogi cal database in AWPS contains current, decoded, hydrol ogica
observations; river and reservoir stage and floodi ng data; gage, telenetry,
| ocation, and observer data; and other hydrol ogi cal and applications data
The schena of this database is too conplex to be described in this docunent,
and is unlikely to be understood except by those trained in relationa

dat abase desi gn. Docurentation of the hydrol ogi c database exists and is
avai l able fromthe NW&6 O fice of Hydrol ogy (OH).

The hydrol ogi ¢ database is accessible by dbaccess and Informx ESQ./C. A
third way of accessing the hydrol ogi ¢ database is through a set of APIs

devel oped by the OH The OH APlIs consist of the source code and the libraries
used by OH devel opers to build the executables that are installed at AWPS
sites. The APIs are not part of the AWPS installed software, and there is no
current plan to nake thempart of the installed WFO or RFC basel i ne, however,
the RFC applications devel opers are probably aware of, and using, these APIs.

4.1.2.3.4 Verification and dinate (hndb) Database

Verification data for the Build 4.3 AWPS Verification Program (repl acenent
for the AFCS VERI FY program) and the Daily and Monthly dinate Reports
Formatter are stored in tables in the hndb database in Inform x. Unlike nost
other Inform x data storage in AWPS, verification data and (to a | esser
extent) climate data are stored in a truly relational nanner across a nunber
of related data tables. As tine permts, docunentation of this database will
be conpil ed and posted on the AWPS Local Applications Hone Page

4.1.3 Data on a Renote AWPS

If products input fromanother site is a requirenent, then a way to get the
data is to FTP the products fromthe site to your site. This is to be used
cautiously because of the inpact of the FTP on your |ocal system and the WAN
There is little inpact on the renpbte system There can be a large inpact on
the WAN dependi ng on the size and frequency of the requests as well as the

nunber of sites that are doing this. In R4.3, sone radar products wll be
distributed over the SBN and each site will be configured to ingest only those
products fromradars in their radar dial list. At this time, the sites that

have i npl enented the FTP of radar products should cease this nmethod and use
the baselined nethod. The action of FTP also has an inpact on the | oca
systemthat is running the FTP client. FTP shall not be done on the servers
because of the inpact to operations.

4.1.4 External Data

Products external to AWPS have two nethods of entering the systemat this
tine. One is through LDAD, the other is through the Asynchronous Product
Schedul er. The baseline decoders used in AWPS are very sensitive to fornat
and shoul d not be used to process data fromexternal sources. |f externa

-9

June 2001

Table 4.1-1, cont.

data has to be processed by a decoder, it is to be performed on the LDAD by a
decoder inplenented by the devel oper. Refer to Sections 6.1, 6.1.2, and 6.1.3
of the AIFM for further information

4,1.5 Were and How to Access Data Sets
Data Files

In the data acquisition process, nost of the incomng data are witten to disk
inflat files (netCDF included). The anobunt of data kept is set as a system
paraneter and depends on the di sk space available. The data files are stored
on the data server in different directories depending on the type of data and
its format. A straightforward set of directory and file nam ng conventions is
used to identify the location, format, and contents of AWPS data files. The
details of these file formats and directory |locations are given in Section
4.2. Since the data directories on the systemare NFS nounted, the data are
transparently accessible to all users (depending on their permssions), no
matter which nmachine within the local network they are using.

C++ APIs are used within the D2D systemto display or to analyze the data

Use of the D2D APls for data access in locally devel oped applications is not
allowed at this time. The D2D APls are conplex and require that the data be
accessed via their data keys (see Section 4.1.1.2.1), and are tightly tied to
the D2D nenus and depictables. Al so, for nany data types, the D2D APIs
currently access only the depictable-specific plotfiles, not the netCDF files
Each of these plotfiles is in a unique format and requires a special APl to
access the data within

Since all the data in plotfiles are (or will be) also contained in net COF
files, local applications shall use netCDF APIs to access the net COF data
files wherever possible. Once the basic pattern of calls is known, it is easy
to nodify existing APls or wite new APls which read net CDF data files. Also
utilities exist to autonatically generate APl source code in FORTRAN77 which
reads any netCDF file. An exanple of the usage and results of these utilities
for reading METAR netCDF files is included as Appendi x 1 of this docunent.

The native net COF APIs are docunented in the Net CDF User's Cuide. Rather than
coding directly fromnetCDF APls, grids should be accessed using the w apper
and navigation APls described in Section 4.2.2.4.

Radar products are the only data stored in flat files that are not also

avail able in a corresponding netCDF format. These data are described in
Section 4.2.4. A convenient set of stand-alone APIs to access and read these
data fromthe AWPS dat abase does not currently exist. However, any code from
out si de sources which accepts WBR-88D radar data that is in the RPGto-PUP
(Archive level V) format can directly access and process the radar data files
in the AWPS dat abase

nform x Data Sets

June 2001

NOTE: The fxatext database is undergoing a redesign for Build 5 to
accommodat e i nternati onal products and product retrieval by WWMO Header
The followi ng description and the information in Section 4.2.7 represent
AW PS up through Build 4. 3.

-10

Table 4.1-1, cont.

AW PS stores decoded text products in the Inform x fxatext database. The

f xat ext dat abase works on a circular buffer basis, storing the newest version
of each product over the oldest. The nunber of versions of each product or
category of products is specified in a table in the database. Locally-

devel oped applications may not, and need not, access the text product database
tables directly through enbedded SQ.. A Command Line Interface (CLI), textdb
is provided for access to and control of the text product database, and does
not require a special setup of the database. Use of textdb is described in
Section 4.2.7.3

4.1.6 Data Inventory Methods

In nost cases, the file nane of an AWPS data file is also the valid tinme or
nom nal hour of the data contained in the file. |In nost cases, a tine
inventory of a given data set is acconplished by sinply obtaining a listing of
the file nanes in the data subdirectory for a specific instance (e.g., GCES;
visible; CONUS scal e; Lanbert projection) of the data type. The D2D subsystem
of AWPS provides specific nethods for obtaining data inventories for each
data type, but these APIs are currently not practical for use by |loca
applications. The lack of APIs for performng data inventories is not a

hi ndrance to | ocal application devel opnent, since in nost cases it is trivia
to obtain an inventory for a specific data type

Fi xed-1 ocati on, schedul ed observations within a defined tine period are pl aced
into netCDOF files for a fixed set of nomnal times (e.g., hourly files for
METAR). Each file contains observations within the tine period for al
reporting stations for the data type. A supporting file can be read to obtain
the possible list of stations contained in the data file. It is necessary to
read the data in the netCDF file to deternine whether it contains a valid data
el ement or report for a given station within the nomnal tinme period covered
by the file. Tine periods of data stored in, and the supporting files for
each type of netCDF data file vary, and are docunented under the appropriate
subsections in Section 4.2.3.

For observations occurring at randomlocations and tinmes (e.g., lightning
reports), the data are generally partitioned by fixed tine periods and pl aced
into a single data file for that fixed period. It will be necessary to read

the contents of the netCDF file to create a tinme inventory of the data at tine
resolutions finer than the fixed periods of the netCDF data files, or to
partition station or randomdata into geographic subsets. See the appropriate
subsection under Section 4.2 for the relationship between file nanes,
supporting files, and the contents of the data file for the given data type.

Inventories for grid data are nore conplicated than those of the observati ona
data sets; however, APIs useful for local applications are provided for grid
inventory. The netCDF grid files contain all the grids for the analysis and
forecast tines of an entire run of a given nodel, and are naned according to
the nodel initial tine. The grid access APls described in Section 4.2.2.4
provide all the necessary capabilities for accessing and obtai ning i nventories
(nodel s, areal scales, initial and forecast tinmes, |evels, physical elenents)
of the grids contained in the AWPS dat abase of netCDF grid files.

Inventories for text products in the text database nmay be created by use of
the textdb command with the -A option. The output tines will correspond to

-11

June 2001

Table 4.1-1, cont.

the storage tines of the text product versions currently in the text database
not the product valid tines. See Section 4.2.7.3 for details on the use of
the textdb utility and the times of text products.

4.1.7 Tine and Date Conventions

Date and time throughout AWPS (except as otherw se noted el sewhere) are in

G eenwi ch Mean Tinme (GWIN, also (and nore correctly!) called Universa
Coordinated Tine (UTC). Date and tine within data and as used for conputation
are expressed as G language type "long" variabl es representing seconds since
00: 00: 00 GvIr, January 01, 1970. Time differences and intervals are expressed
as C | anguage type "long" variables representing seconds. Dates used in file
nam ng and data taggi ng (when done in ASCII) are in ASC| yyyymud for mat
(yyyy is year, mmis nonth, and dd is day of nonth). Tines used in file

nam ng and data taggi ng (when done in ASCII) are in ASCII hhmss format (hh is
hour, mmis mnute, and ss is second).

The ctinme set of APls provided with HP-UX, and callable from C++, C, and
FORTRAN, includes APls to convert between seconds since 00:00: 00 UTC, January
01, 1970 and a structure containing separate integers for year, nonth, day of
nont h, day of week, day of year, hour, mnute, and second. The three prinary
APls of interest are nktinme, gntine, and localtine. The function nktime
assunes the tine in the structure is local time, not UTC. The tine in the
structure produced by localtime will be local time, not UTC. The UN X
environnent variable "TZ" indicates what tinme zone is "local tine" for the
user's session. On AWPS workstations, "TZ" is set to Universal Coordinated
Tine. |f you need to use local time, you are on your own. Refer to "Date and
Time Mani pul ation" in Chapter 10 of Programm ng on HP-UX for nore information
on the ctinme routines. See the Unix man page entries for date, tine, and
gettineofday as a starting point for |earning about and using HP-UX system
times.

A coupl e of rem nders

1 In normal places, for over half the year, "daylight savings tinme" nust
be accounted for when using local tine.

Current practice, in those states where "daylight savings tine" is
used, is to nove cl ocks ahead one hour at 2 a.m |ocal standard tine
(2 a.m beconmes 3 a.m) on the first Sunday of April, and back one
hour at 2 a.m local daylight tinme (2 a.m becones 1 a.m) on the |ast
Sunday of Cctober.

It is strongly recoomended that you avoid local time. For further information
on ctine and its APls, see the nman page for ctine.

Al ways al |l ow use four digits for year
4.1.8 Data Access Controls

Def err ed.

-12

June 2001

Table 4.1-1, cont.

4.1.8.1 Inform x Concurrency Controls: Database Locks
Def err ed.

4.1.9 Purging

This section will address data purging; |og purging was addressed in Section
3.6. Data purging, including tenporary files created or used, is vital to
overal | systemperformance. Al directories including /tnp can be filled
causi ng systemwi de problens. Testing of any local application should take
into account instances when a data nai ntenance process is not up for sone
reason to fully assess problens that may arise

The AWPS baseline is delivered with two nechani sns for mai ntenance of data
st or age

e Purge is run every 30 nminutes and is used to maintain the nunber of
products in specified directories. |If you add a new directory of
products, a newline will be necessary in the purge configuration file to
specify the directory to purge and the nunber of files to keep in the
directory. |Instructions for nodifying the purge configuration file,

[awi ps/ f xal/ bi n/ f xa-dat a. purge, and potential ramifications are contained
in sections 9.1 - 9.3 of the SW

e Scour is run once a day and is used to clean up log files and a few itens
not hit by master.purge. Scour deletes files based on date.
Instructions for nodifying the scour configuration file
[awi ps/ fxal bin/scour.conf, are contained in section 9.1.1.1 of the SW

Consi deration nust be given to tenporary data storage. The |ocal application
shall ensure tenporary files are renmobved when processing is conplete and add
saf eguards to ensure purging takes place if a handling process is down or

sl owed down due to data vol une.

If you add data to any Inform x database, you nust wite a custom purge
utility to purge your data fromthat database if the data is not purged
through existing routines (i.e., through dbpurge for the hydrol ogy database,
purge_report for the hnmdb, rmtables and delete_log_ files for ADAPT, and

t hrough fxa-data. purge, via nmaster_purge and scour, for fxa data)

4.2 Data d asses

The hydronet eorol ogi cal data sets on AWPS are divided into several classes,
based on the data source and the data type. The ngjor data cl asses of AWPS
have been listed in Table 4.1-1. Details of the data |ocations, formats,
content, and access nethods for each data class are described in the follow ng
subsecti ons.

4,2.1 Arcraft Cbservations

Automated aircraft observations are not available in AWPS in Build 4.3
However, nmanual PIREPs are stored in the text database under their AFCS Pl Ls.

-13

June 2001

Table 4.1-1, cont.

4.2.2 @Gids

4.2.2.1 Namng Conventions for Gid Directories and Files

In AWPS Build 4.3, grids are stored in netCDF files once the grid has been
unpacked (decoded from GRIB) or conputed (in the case of isentropic |levels or
derived grid variables; or MAPS, LAPS, or LAW). Thus, all grid I/Ois done
wi th net CDF APl s.

Al nost all netCDF grid files are stored in a path named according to grid
source, scale, and nodel. Each file contains the conplete nodel output grid
set for a single run of a given nodel and a given scale. The file nanes are

based on run date and tine. Here is a tenplate:

$FXA _DATA/ i d/ <sour ce>/ net CDF/ <scal e>/ <nodel >/ <yyyymdd_HHWWH
R path -------cmmaoo - | |---- file ---]

wher e:

$FXA DATA is an environnment variable specifying the root of the data
directory tree. This variable's current value is "/data/fxa".

<source> is either FSL, |ISPAN, SBN, or ML;

<scal e> may be any of CONUS202, CONUS211, CONUS212, CONUS213, CONUS215,
FSL_CONUS C, LAMP_Grid, LAPS Gid, LATLON, MAPS National, MSAS, NAT203,
NAT204, NAT205, NHEMPO1l, RE®&07, and RE®33;

<nodel > may be any of AVN, ECMNF, Eta, ETA AV, FCST, GW LAMP, LAPS,
MesoEta, MRF, NGV RUC, RUC Al'V, 40km MAPS;

yyyy is the 4-digit year;

mmis the 2-digit nonth;

dd is the 2-digit day-of - nont h;

HHis the 2-digit initialization (run) tinme hour; and

MMis the 2-digit initialization (run) tinme mnute (usually 00).
Three exanpl es fol |l ow

- Northern Hem spheric 201 grids of the Septenber 13, 1996, 0000z run of
t he MRF nodel :

/ dat a/ f xa/ Gi d/ SBN net CDF/ NHEM201/ MRF/ 19960913_0000
- CONUS 202 grids of the Septenmber 13, 1996, 1200z run of the AVN nodel:

/ dat a/ f xa/ Gri d/ SBN/ net CDF/ CONUS202/ AVN 19960913_1200

-14

June 2001

Table 4.1-1, cont.
- CONUS 202 grids of the Septenber 14, 1996, 0000z run of the NGM nodel
/ dat a/ f xa/ Gi d/ SBN net CDF/ CONUS202/ NGM 19960913_0000
The exceptions to the above file nam ng scheme incl ude
1) the EOWAF nodel, whose grids are stored in files having the path:
/ dat a/ f xa/ G&i d/ SBN net CDF/ LATLON ECMAF/ NHEM yyyymmdd_HHVW]
[Note the extra directory |level (NHEM below (after) the nodel (ECMAF)],
2) LAWP grids, stored in files having the path:
/ dat a/ f xa/ Gri d/ TDL/ net CDF/ LAMP_Gi d/ LAMP/ yyyymdd_HHWM
3) SCAN QPF grids, stored in files having the path
/ dat a/ f xa/ Gi d/ TDL/ net CDF/ QPF_G'i d/ QPF/ yyyymdd_HHVM

4.2.2.2 Oganization of netCOF Gid Files

June 2001

Note: The information in Section 4.2.2.2 and its subsections is
provi ded for conpl eteness of docunmentation. It is not necessary to
know this | evel of detail to successfully access and process AW PS
grids. The reader nmay wish to skip to Section 4.2.2.4.

Al AWPS netCDF grid files contain nineteen global attributes, eight common
di mensi ons, and ei ght common variables. The files contain additiona

di mensi ons and vari abl es, the names and nunbers of these varying fromfile to
file. There are no coordinate variables (dinmensions that are al so variabl es
with values stored in them) for the vertical levels or the forecast (or valid)
tines of the grids.

Wiile not at first intuitive, not using a dinmension for the vertical |evels of
the grids does nmake sone sense when you think about it. As an exanple
consider the AVN 213 (National CONUS) tenperature grids. There are 22 of them
for each forecast tine: 2 neters above ground, every 50 nb from 1000 nb to
100 nb inclusive (that's 19 levels), the surface to 30 nb above surface
boundary | ayer, and the tropopause. Since the values of a dinension nust al
be the same type and units, the 22 levels of the AVN tenperature grid cannot
straightforwardly be represented by a dinension. The AWPS designers
incorporated lists of the values of the grid levels both as a character
attribute of each netCDF grid variable and as a conpanion attribute (this is
AIFMterm nology, it is not a netCDF tern) net COF character variable.

4,2.2.2.1 dobal Attributes

AWPS build 4.3 netCDF grid files have nineteen global attributes. They are
as follows:

-15

Table 4.1-1, cont.

1)

2)

3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)
14)
15)

16)

17)

18)

19)

“Cdl Date” = an 8-character string giving the date of the cdl file used to
define the structure and contents of this file. This in effect
identifies the version of this netCDF file structure. The date is given
in “YYYYMDD format.

“Depi ctorNane” = a 75-character string consisting of a unique identifier
for the map projection / areal coverage conbination for the grids in this
file.

“Projlndex” = a long int which identifies the projection of the grids
stored in this file.

“proj Nanme” = a 42-character string giving the name of the map projection
of the grids stored in this file.

“centralLat” = a float value giving the latitude (in degrees north) at
whi ch the nmap projection is tangent to the earth.

“central Lon” = a float value giving the longitude (in degrees east) at
which north is “up” on the nap projection.

“rotation” = a float value giving the angle (in degrees clockw se) the
map projection’'s y-axis is rotated fromnorth.

“xMn” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL's use in D 2D

“xMax” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL's use in D 2D

“yMax” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL's use in D 2D

“yMn” = a float value giving an arbitrary cartesian coordinate for the
map projection. This is for FSL's use in D 2D

“lat00" = a float value giving the latitude (in degrees north) of the
lower left (southwest) corner of the grid.

“lon00" = a float value giving the longitude (in degrees east) of the

lower left (southwest) corner of the grid.

“lat \xNy” = a float value giving the latitude (in degrees north) of the
upper right (northeast) corner of the grid.

“l onNxNy” = a float value giving the |longitude (in degrees east) of the
upper right (northeast) corner of the grid.

“dxKnf = a float value giving the left-to-right (west-to-east) distance
in kiloneters between two adjacent gridpoints at the |atitude and

I ongi tude given by global attributes “latDxDy” and “l| onDxDy” defi ned

bel ow.

“dykKnf = a float value giving the bottomto-top (south-to-north) distance
in kiloneters between two adjacent gridpoints at the |atitude and

I ongi tude given by global attributes “latDxDy” and “l| onDxDy” defi ned

bel ow.

“latDxDy” = a float value giving the latitude (in degrees north) at which
the “dxKnf and “dyKni (defined above) val ues are valid.

“l onDxDy” = a float value giving the |longitude (in degrees east) at which
the “dxKnf and “dyKni (defined above) val ues are valid.

4,2.2.2.2 D nensions and Coordi nate Vari abl es.

The netCDF grid files of AWPS have no coordinate variables and only one
unlimted (or record) dinension. The unlimted dinmension is naned “record”.
It represents the tinme dinmension of the grids.

The netCDF grid files of AWPS have ei ght common di nensi ons for di mensioni ng
(sizing) variables (including grids). Additional dinensions representing the

-16

June 2001

Table 4.1-1, cont.

nunber of available levels of the nodel's grid variables vary fromnodel to
nodel . Every dinension in a netCDF file has a size. The eight comon
di mensi ons are:

1) "record" = nunber of valid tinmes (initialization and forecast) avail able
in this nodel run. Exanple: for the AVN nodel, the size of "record" is
17. This represents initialization (Oh) and sixteen forecast tines (3h
6h, 9h, 12h, 15h, 18h, 21h, 24h, 30h, 36h, 42h, 48h, 54h, 60h, 66h, and

72h) for a total of seventeen valid tinmes. "Record" is used as the tinme
di mension of grid variabl es.
2) "n_val times" = nmaxi mum nunber of valid tinmes (initialization and

forecast) this nodel run could have. The dinension "n_valtimes" is used
as the time dinension of conpanion inventory variables (see section
4.2.2.2.3.1).

3) "data_vari abl es" = nunber of grid variables (physical elenents; e.g.
tenperature, pressure, relative humdity) in the netCOF grid file. (This
really should be a global attribute, not a dinension.)

4) "narel en" = maxi num nunber of characters that can conprise a nane. The
size of "nanelen" is fixed at 132 (nanes can be at nost 132 characters
I ong).

5) "charsPerLevel " = nunber of characters used to represent a (string) val ue
of the conpanion | evels variables (see section 4.2.2.2.3.1). Exanple
for the NGM nodel, "charsPerLevel" has size 11, neaning |evel values are
11-character strings.

6) "x" = nunber of gridpoints in the x dinmension. Gid subscripts (indices)
inthe "x" direction increase fromleft to right, that is, fromwest to
east .

7) "y" = nunber of gridpoints in the y dinmension. Gid subscripts (indices)
inthe "y" direction increase frombottomto top, that is, fromsouth to
north.

8) "nav". This dinension, which currently always has a value of 1, is not
now used. It is left over froman older CDL file

The additional dinensions in each netCDF grid file are what shall henceforth
be referred to as | evels dinmensions. Associated with each grid variable are
two conpanion attribute variables. One of these is a string array (list) of
values of the grid s vertical levels. The other is a character array serving
as an inventory of what level and valid tine conbinations within the grid
variabl e are present and which are mssing. These two conpanion attribute
variables will be discussed in detail later. The levels dinension is the
nunber of vertical levels in the grid variable and its two conpanion attribute
vari abl es. Levels dinensions have nanes of the form"levels_n" or

"level s_nn", where n and nn represent both the value of the |evels dinension
and the nunber of levels for the parent grid variable(s). As an exanple
consi der the hemispheric AUN grids. It has eight grid variabl es:

"gh" (geopotential height)

"t" (tenperature)

"uw' (west-east conponent of w nd)

"vw' (south-north conponent of wi nd)

"pvv" (pressure vertical velocity)
_"p" (pressure)

"prsl " (mean sea | evel pressure), and

"vss" (vertical speed shear).

-17

June 2001

Table 4.1-1, cont.

Each of these eight grid variables has associated with it a | evels dinension
according to how many levels the parent grid variable has. So

1 "gh" has five levels (850 nb, 700 nb, 500 nb, 300 nb, and 250 nb). So
its two conpanion attribute varaibles also have a vertical dinension of
five. Therefore the levels dinension “levels_5", which has a value of 5,
has been defined to serve as the vertical dinension of “gh” and its two
conpanion attribute varaibles

I "t" has five levels (850 nb, 700 nb, 500 nb, 250 nb, and "TROP"). So its
two conpanion attribute varaibles al so have a vertical dinmension of five
Therefore the I evels dinension “levels_5", which has a value of 5, has
been defined to serve as the vertical dinension of “t” and its two
conpanion attribute varaibles

. "uw' and "vw', each has eleven levels . So its two conpanion attribute

varai bl es al so have a vertical dinension of eleven. Therefore the levels
di rension “levels_11", which has a value of 11, has been defined to serve
as the vertical dinension of “uw’ and “vw’ and their two comnpani on

attri bute varai bl es.

To finish this exanple quickly:

' "pvw": "levels 9", which has a value of 9

. "p": "levels 2" (the two levels being “SFC’ and "TROP'), which has a
val ue of 2.

' "pnsl": “levels_1" (the one level being "MSL"), which has a value of 1

1 "vss": "levels_ 1" (the one | evel being "TROP'), which has a value of 1

So the netCDF grid file for the hem spheric AVN nodel has five levels
di rensions: "levels_1", “levels_2", "levels 5", "levels_ 9", and "l evels_11"

4,2.2.2.3 Variables, with their D nensions and Attri butes.

The variables in netCDF grid files can be divided into two groups:

grid variables with their conpanion attribute variables, and
1 variables specifying characteristics of a nodel run and scale as a whol e,
applicable to all grid variables within the file.

W will exam ne these two groups separately.
4,2.2.2.3.1 @Gid Variables with their Conpanion Attribute Variabl es.

There are two "special" values that nust be watched for when using gridpoint
data: the "fill value" and the val ue representing "not defined".

! Wen space for a gridis created in the netCOF grid file, it is
initialized to the "fill value" before any actual data are stored in it.
If the grid is mssing, then its space in the netCOF grid file wll
remain filled with the "fill value". Wen agridis read in fromthe
netCDF grid file, it will be either entirely filled with the "fill
value", or no gridpoints at all will be filled with the "fill value". So
if one point's value is equal to the "fill value", then the entire grid
is mssing. Therefore, after reading a grid in froma netCDF grid file,
it is recommended that the programmer check any one gridpoint for the

-18

June 2001

Table 4.1-1, cont.

"fill value" before attenpting to use the grid. The value of the "fil
value" is found in "_FillValue", one of the attributes of the grid. See
al so the description of the "_FillValue" attribute bel ow.

! Sonetines, an individual gridpoint's value is "not defined'. An exanple
of this is an isentropic surface gridpoint |ocated where the isentropic
surface is below ground. In AWPS, a gridpoint whose value is "not

defined" is assigned the value 1.0e+37. Because such nunbers nay not
have an exact representation in a conputer's floating point
representation, programers should allow sone "pad" when checking for
"not defined" gridpoint values. It is therefore recommended that the
programmer use a gridpoint's value only if it is less than 1.0e+36

Each of the grid variables (the nunber of themis the sane as the size of the
di mrensi on nanmed "data variables") is a 4-dinensional "variable". The 4
di mensions are (in order):

"record" (this is the tine dinension)

one of the levels dinensions (this is the vertical dinension)
"y" (this is the south-to-north dinension), and

"X" (this is the west-to-east dinmension).

Each grid variable has six attributes and two conpanion attribute variabl es.
The attributes are as foll ows:

1 “long_name": a variable-length string containing a "spelled out" name of
the neteorol ogical variable stored in the grid

! "units": a variable-length string specifying the units of the data
stored in the grid.

' “valid range": two float values giving the nini numand naxi num val ues
that the grid val ues can have

' " Fillvalue": a floating point nunber giving the value used to signify

the entire grid is mssing. For the MW nodel grids, this attribute's
value is -99999.0 for sone grid variables, and 9.9999999E+36 for the
remaining grid variables. For all other nodels, this attribute's val ue
is always -99999. 0.

" n3d": a long integer value giving the nunber of 2-dinensional slabs
that should be read to get a 3-dinensional description of the

net eorol ogi cal variable stored in the grid.

"level s": a variable-length string containing a list of the vertica
levels of the grid. It nust be parsed to be correctly understood

The first conpanion attribute variable is a variable-length list of the parent
grid s vertical level values. This variable shall henceforth be called the
conpanion |l evels variable. Each vertical level value is a variable-length
string (the length of the string is fixed within a given netCDF grid file, but
varies fromone netCDF grid file to another). The nane of this variable is of
the form

<parent _grid_vari abl e_nane>Level s
For exanple, if the parent grid variable is "av" (for "absolute vorticity"),
then the nane of the conpanion |levels variable is "avLevel s". Conpanion

| evel s vari abl es have two di nensi ons:

-19

June 2001

Table 4.1-1, cont.

1 alevels dimension - corresponds to the parent grid' s vertical |evels
This levels dinension is the sanme | evel s dinension associated with the
parent grid variable.

"charsPerLevel" - the length of the strings used to represent the
vertical |evel values

Conpani on | evel s variabl es have no attributes

Conpani on | evel s variables are best thought of as a list or set of vertica

| evel val ues concatenated together into one long string. The nunber of
vertical level values is equal to the value of the levels dinension. Each of
the vertical level values is expressed as a string whose length is equal to
the value of the "charsPerLevel " dinmension. The vertical |evel values nust be
parsed to be correctly understood. Let's |look at an exanple. One of the grid
variabl es in the hem spheric scale AVN nodel is "vw' (the "v" or south-to-

north conponent of the wind). |Its conpanion levels variable is called
"vwLevel s", and its two dinensions are "levels_11" and "charsPerLevel". The
value of "levels_11" is 11; the value of "charsPerLevel" is 8. So "vw' can be

treated as a 88-character string constructed by concatenati ng together el even
vertical |evel values, each expressed as an 8-character string. The el even
vertical |evel values are:

"MB 1000 " = 1000 mllibar Ieve
"MB 80 " =850 mllibar |eve
"MB 700 " =700 mllibar |eve
"MB 500 " =500 mllibar |eve
"MB 400 " = 400 mllibar |eve
"MB 300 " =300 mllibar |eve
"MB 250 " =250 mllibar |eve
"MB 200 " =200 mllibar |eve
"MB 150 " = 150 mllibar |eve
"MB 100 " = 100 mllibar |eve
"TROP " = tropopause

So the 88-character string value of "vw' is "MB 1000 MB 850 MB 700 MB 500
MB 400 MB 300 MB 250 MB 200 MB 150 MB 100 TROP ",

The second conpanion attribute variable is an inventory indicating which valid
tines and vertical levels of the parent grid variable actually contain data,
and which are missing. This variable shall henceforth be known as the
conpani on inventory variable. The name of this variable is of the form

<parent _grid_variabl e_nane>l nventory
For exanple, if the parent grid variable is "av" (for "absolute vorticity"),

then the nane of the conpanion inventory variable is "avlnventory". Conpani on
inventory vari abl es have two di mensi ons:

"n_valtimes" - corresponds to the valid tines of the parent grid

a levels dinension - corresponds to the parent grid's vertical levels
This levels dinension is the sanme | evels dinension associated with the
conpanion |levels variable and the parent grid variable

Conpani on i nventory vari abl es have no attri butes.

-20

June 2001

Table 4.1-1, cont.

Conpani on i nventory vari abl es are best thought of as a two-di nensional array,
with rows (the first subscript) corresponding to valid tines, and col ums
corresponding to vertical levels. Consider as an exanple the AVN nodel "t"
(for "tenperature") grid variable. Its conmpanion inventory variabl e
("tlInventory") has 11 rows or valid times (the "n_valtines" dinension has a
value of 13), and 5 colums or vertical levels (its levels dinension is
"level s_5", which has a value of 5). |If programming in C or C++ (renenber,
subscripts in C and C++ start with 0, not 1), tlnventory(2,0) indicates

whet her or not "t" contains actual data for the third valid tinme (the 12 hour
forecast) and the first vertical level ("MB 850 ", neaning the 850 mllibar
| evel).

Formal | y, conpanion inventory variables are declared to contain NC_ CHAR
(character) data, but in practice, the values in this variable are treated as
byt e-sized integers. A non-zero value (usually 1) indicates the parent grid
vari abl e contains actual data for the value's valid tine and vertical |evel
while a zero value indicates the corresponding valid tinme and vertical |eve

in the parent grid variable are mssing. So, for exanple (if programming in C
or C++), tlnventory(2,0) = 1 indicates that the tenperature grid variable has
actual data for the 850 millibar 12 hour forecast, while tlnventory(9,4) =0
indicates that the 60 hour tropopause tenperature forecast is nissing

4,2.2.2.3.2 Variables Representing Overall File Characteristics

AWPS netCDF grid files contain the follow ng eight variables used to
characterize the file (the nmodel run and scale):

1) "valtineM NUSreftime" = a one-dinensional array of valid tinmes in seconds
since the reference tine (see the discussion of the variable "reftine" in
this section). Values of this variable are of type NC_ LONG (long int)
This variabl e has one dinension ("n_valtines") and one attribute. The
attribute is a 7-character string called "units", and has the val ue
"seconds".

2) "valtine" = a one-di nensional array of valid times in seconds since 00Z
on January 01, 1970. Values of this variable are of type NC DOUBLE
(double). This variable has one dinension ("record") and two attributes.
The first attribute is a 10-character string called "long_nane", and has

the value "valid time". The second attribute is a 35-character string
called "units", and has the val ue "seconds since (1970-1-1 00:00:00.0)"
3) "reftine" = a one-di nensional array of reference tines (nodel run tines)

in seconds since 00Z on January 01, 1970. Values of this variable are of
type NC _DOUBLE (double). This variable has one dinension ("record") and
two attributes. The first attribute is a 14-character string called

"l ong_nanme", and has the value "reference tine". The second attribute is
a 35-character string called "units", and has the val ue "seconds since
(1970-1-1 00: 00: 00.0)"

4) "origin" = the nane of the person(s) or organization that produced the
nodel run. The value of this variable is of type NC CHAR (character or
string). This variable has one dinension ("nanel en") and no attributes.
An exanpl e value of "origin" (with trailing spaces trinmed off) is
"NCEP". (This really should be a global attribute, not a variable.)

5) "nmodel " = the nane of the nunerical nodel that produced the grid
variables in this file. The value of this variable is of type NC CHAR
(character or string). This variable has one di nension ("nanelen") and

-21

June 2001

Table 4.1-1, cont.

no attributes. Exanple values of "nodel"” (with trailing spaces trimmed
off) are "126 wave triangular, 18 layer spectral aviation run" and

"Nested Gid Mdel". (This really should be a global attribute, not a
vari abl e.)
6) “staticTopo” = a two-dinensional grid of float values giving the hei ght

of the nodel’s surface in neters above nean sea | evel at each grid point.
This variable has two dinensions (“y” and “x”) and three attributes. The
first attribute is a 6-character string called “units”, and has the val ue

“meters”. The second attribute is a 10-character string called
“l ong_nane”, and has the val ue “Topography”. The third attribute is
called “_FillValue”. |Its value is a floating point nunber giving the

value used to signify the entire grid is mssing. This attribute's val ue
is always -99999. 0.

7) “staticCoriolis” = a two-di nensional grid of float values giving the
value of the Coliolis parameter f. Nowf =2 * W* sin (f), where W
is the earth’s rotation rate (2p radi ans per day, 1 day = 86400 seconds),
and f is the latitude. So f = (2.0 * 2p * sin (latitude) / 86400.0) in
(seconds”™-1) at each grid point. This variable has two di nensions (“y”
and “x”) and three attributes. The first attribute is a 7-character

string called “units”, and has the value “/second”. The second attribute
is a 18-character string called “long_nane”, and has the value “Coriolis
paraneter”. The third attribute is called “_FillValue”. Its value is a

floating point nunber giving the value used to signify the entire grid is
mssing. This attribute's value is always -99999. 0.

8) “staticSpacing” = a two-di nensional grid of float values giving the
di stance (in neters) between 2 adjacent grid points. This variable has
two di mensions (“y” and “x”) and three attributes. The first attribute

is a 6-character string called “units”, and has the value “neters”. The
second attribute is a 12-character string called “long_nane”, and has the
value “@id spacing”. The third attribute is called “_FillValue”. Its

value is a floating point nunber giving the value used to signify the
entire grid is mssing. This attribute's value is always -99999. 0.

4,2.2.3 Qher supporting files

June 2001

The files described in this section are part of the AWPS source tree and
will not be available at field sites. However, the information in the
described files is listed in Appendix 2

There are two viewabl e-with-systemeditors data files of interest when reading
grids fromAWPS netCDF grid files: "gridSourceTable.txt" and

"virtual FieldTable.txt". The file "gridSourceTable.txt" contains, in the
tenth field (called "nane") of each logical record, the valid values for the
"sourceld" calling argunent to three of the APls described in the next

section. The structure and contents of the records of this file is described
by comments at the top of the file. The file "virtual FieldTable.txt" contains
inthe first field of each logical record the valid values to the API

"get @i dSliceAccessKey", also described in the next section. The structure
and contents of the records of this file are described in the file

" README. GRI DS'.

-22

Table 4.1-1, cont.

In addition to the above two files, the "cdl" (Comon Data form Language)
files may provide hel pful information. "cdl" files are used to define the
structure and contents of netCDF files. They are human-readabl e (and
editable) using any text editor. D2D creates a netCDF grid file by running
"ncgen" on the appropriate "cdl" file. The "cdl" files for AWPS net CDF grid
files are well docunented with internal comments. For nore information on
"cdl" files and the “ncgen” program see the "Net CDF User's Quide".

Addi ti onal docunentation and information may be found in “gridTabl es. doc”
“maksupar g. doc”, and “styl eRul es.doc”. These files are located in directory
“$FXA HOVE/ dat a/ | ocal i zati on/ docunentation”. They are htm docunents, best
vi ewed using the Netscape browser.

4.2.2.4 Existing software (APIs) for reading netCDF grid files

June 2001

None of the following will be able to be inplenented by the field without
access to the C++ conpiler used to build the baseline code. However, a
“@id Server” is expected to be in place during Build 5, which will allow
| anguage- i ndependent access to AWPS net CDF grids w thout the need for
access to the AWPS source code or libraries.

APl's for accessing AWPS netCDF grid files and informati on about the grids are
found in:

$FXA_HOVE/ src/ dataMgnt / Gri dSl i ceW apper . h

FORTRAN cal | ers need not include anything to use the APIs defined in the above
nanmed file, but may viewthe file to see the function nanes and calling
sequences.

There are several C | anguage APIs of interest in "GidSliceWapper.h"

Di scussed here are one APl to provide lists of I1Ds for what's available, three
APl's for accessing grids, three APls for accessing infornation about grids,
and one APl for getting the path (directory + file nane) of the netCDF file in
which grids of interest are stored.

The first APl of interest is “gridSlicelLists”
void gridSliceLists (

char ***sourcelds |, /* output */
int *nSources , /* output */
char ***fjeldlds , /* output */
char ***descriptions , /* output */
int *nFields , /* output */
char ***pl anelds , /* output */
int *nPl anes) /* output */

This function constructs and returns lists (arrays) of valid "sourceld"
"fieldld", and "planeld" values for the three input calling argunents to
"get @i dSli ceAccessKey" discussed earlier. The calling argurments for
"gridSlicelLists" are as follows:

-23

Table 4.1-1, cont.

"descriptions" is (a pointer to) an array of string (char *) descriptions of
each of the "fieldld' values returned in "fieldlds"

"fieldlds" is (a pointer to) an array of valid string (char *) val ues for
the "fieldld" calling argunment of function "getQ&idSliceAccessKey".

"nFields" is (a pointer to) the nunber of "fieldld" values in "fieldlds"
"nPl anes" is (a pointer to) the nunber of "planeld" values in "planelds".
"nSources" is (a pointer to) the nunber of "sourceld" values in "sourcelds"

"planelds" is (a pointer to) an array of valid string (char *) val ues for
the "planeld" calling argunment of function "getQ&idSliceAccessKey".

"sourcelds" is (a pointer to) an array of valid string (char *) val ues for
the "sourceld" calling argunent of function "getQ&idSliceAccessKey".

The function "gridSliceldLists" will allocate nenory space for "descriptions"
"fieldlds", "planelds", and "sourcelds"; you nust free the nenory space when
you are done with it.

The three functions for accessing grids are:

unsi gned | ong get Gi dSli ceAccessKey (

char *sourceld , /[* input */
char *fieldld, /[* input */
char *planeld) /[* input */

void gridSlicelnventory (

unsi gned | ong key , /[* input */
long **refTinmes , /* output */
long **fcstTimes , /* output */
int *nTimes) /* output */

void gridSliceAccess (

unsi gned | ong key , /[* input */

long refTine , /[* input */

long fcstTine , /[* input */

float **data , /* output */

float **data2 , /* output */

int *nx , /* output */

int *ny , /* output */

int *nz , /* output */

float **|evel Val ues) /* output */
To use these APls, you generally will first call "getGidSliceAccessKey" to
get D2D s key for the conbinati on of nodel, projection, scale, level, and
field you desire. If you want the surface grid and all avail able isobaric

levels for the desired field, pass in a NULL pointer for the calling argunent
"planel D'. The D2D key for the desired grid(s) is returned as the function's
val ue

-24

June 2001

Table 4.1-1, cont.

Generally, you will next call "gridSlicelnventory" to get lists (arrays) of
the reference tines and forecast times for which the desired conbination of
nodel , projection, scale, level, and field is available. Use the key returned
by "getGi dSliceAccessKey" to specify the desired conbi nati on of nodel
projection, scale, level, and field. The function "gridSlicelnventory" will
allocate (nmalloc) the nenory space for the two arrays, but it is the caller's
responsibility to free the menory space when it is finished with the arrays.
The nunber of reference and forecast tines (the dinension of the two arrays)
is returned in the calling argurment "nTines".

Now, call "gridSliceAccess" to get the desired grid(s). Use the key returned
by "getGi dSliceAccessKey" to specify the desired conbi nati on of nodel
projection, scale, level, and field. Use one of the reference times and one
of the forecast times returned by "gridSlicelnventory" to specify the
reference tinme and forecast tine for the desired grid(s). Cal
"gridSliceAccess" once for each conbination of reference tine, forecast tine,
and grid key. What "gridSliceAccess" returns depends on the "planeld" given
to "getGidSliceAccessKey" and the rank (nunber of dinensions) of the desired
field

- If "planeld" was not a NULL pointer, and the desired field is scalar
"gridSliceAccess" will return NULL pointers for "data2" and
"l evel Val ues", zero for nz, (a pointer to the address of) the desired
gridin "data", and (pointers to) the dinmensions of the requested grid in
"nx" and "ny".

- If "planeld" was not a NULL pointer, and the desired field is a two-
conponent vector, "gridSliceAccess" will return a NULL pointer for
"l evel Val ues", zero for nz, (a pointer to the address of) the desired
grid for the first (i) conponent of the desired field in "data", (a
pointer to the address of) the desired grid for the second (j) conponent
of the desired field in "data2", and (pointers to) the di mensions of the
requested grid pair in "nx" and "ny".

- If "planeld" was a NULL pointer, and the desired field is scalar,
"gridSliceAccess" will return a NULL pointer for "data2", (a pointer to
the address of) all available isobaric grids and the surface grid for the
desired field in "data", (a pointer to the address of) the array of the
I evel values for the returned grids in "level Val ues", (a pointer to) the
nunber of returned grids (and | evel values) in "nz", and (pointers to)
the di mensions of the returned grids in "nx" and "ny"

- If "planeld" was a NULL pointer, and the desired field is a two-conponent
vector, "gridSliceAccess" will return (a pointer to the address of) al
avai |l abl e i sobaric grids and the surface grid for the first (i) conponent
of the desired field in "data", (a pointer to the address of) al
avail abl e isobaric grids and the surface grid for the second (j)
conponent of the desired field in "data2", (a pointer to the address of)
the array of the level values for the returned grids in "level Val ues", (a
pointer to) the nunber of returned |evel values in "nz", and (pointers
to) the dinmensions of the returned grids in "nx" and "ny".

-25

June 2001

Table 4.1-1, cont.

The function "gridSliceAccess” will allocate (nmalloc) nenory for "data"
"data2", and "level Values". It is the calling routine's responsibility to
free this nenory space when finished with it.

As was noted earlier in this section, the programer shoul d:

- use agridonly if is not missing, that is, if it is not filled with the
"fill value" (usually -99999); and

- use a gridpoint value only if it defined, that is, only if the value is
| ess than 1. 0e+36.

These caveats apply to the grids "data" and "data2", and to the gridpoint
val ues in them

Fol l owi ng are descriptions of the calling argunents for the above three APIs:
"data" is (a pointer to the address of) the array in which the requested
grid(s) is (are) returned. |If the requested field is a two-conponent

vector (such as wind), the first (i) conponent will be returned in this

variable, and the second (j) conponent will be returned in "data2".

"data2" is (a pointer to the address of) the array in which the second (j)

conponent of a two-conponent vector (such as wind) will be returned. |[f
the requested field is scalar, a NULL pointer will be returned for this
vari abl e.

"fcstTine" is the nunber of seconds after "refTime" at which the requested
grid(s) is (are) valid. For example, if the requested grid(s) is (are)
valid three hours after "refTinme", "fcstTime" should be 10800

"fcstTines" is (a pointer to the address of) the array of forecast tines
avai |l abl e for the requested nodel and scal e.

"fieldld" is (a pointer to) the nane of the desired field (reteorol ogica
variable). Exanples include "nsl-P', "PoT", and "qVec". A current list
of valid “fieldld” values can be obtai ned by running program
test G i dKkeyServer with a conmmand |ine argunent of “v” (just enter
“$FXA HOVE/ bi n/test & i dKeyServer v” at the Unix command pronpt), or by
witing a short driver (main program) to call "gridSliceldLists"
(described below and then print out the "fieldlds" and "descriptions"
arrays it returns. Either way, a considerable anobunt of output nay be
generated, so it is recommended you re-direct the output to a file, and
then print the file or viewit with an editor. A few sanple output |ines
froma “$FXA HOVE/ bi n/test & i dKeyServer v” run may be viewed in Appendi x
2, Exhibit A2-1

"key" is D2D s internal long integer identification nunber for the desired
nodel - scal e-1 evel -field conbination. The only things you do with this
variable (returned to you by "getGidSliceAccessKey") is pass it on to
"gridSlicelnventory" and "gridSliceAccess"

"l evel Values" is (a pointer to the address of) the array of |evel values for
the grid(s) returned to you by "gridSliceAccess".

-26

June 2001

June 2001
Table 4.1-1, cont.

"nTines" is (a pointer to) the nunber of tines returned in each of
"refTimes" and "fcstTinmes".

"nx" is the nunber of gridpoints in the x (west-to-east) dinmension

"ny" is the nunber of gridpoints in the y (south-to-north) dinmension

is the nunber of vertical |evel values returned in "level Values". It
is also the nunber of grids returned in "data" (and in "data2" if the
requested field is a two-conponent vector).

nz

"planeld" is (a pointer to) the nane of the desired conbination of |eve
type and | evel value. Exanples include "400MB", "Trop", "315K', and
"1000MB-500MB". Note: if "planelD' is NULL, "gridSliceAccess" will return
grids for the desired field for the surface and all avail able isobaric
levels. A current list of valid “planeld” values can be obtai ned by running
program "test @i dkeyServer" with a command |ine argunent of “p” (just type
"$FXA HOWVE/ bi n/test Gi dKeyServer p" at the Unix command pronpt), or by
witing a short driver (main program) to call "gridSliceldLists" (described
bel ow) and then print out the "planelds" array it returns. E ther way, a
consi derabl e anount of output nay be generated, so it is recomended you re-
direct the output to a file, and then print the file or viewit with an
editor. A fewsanple lines froma “$FXA HOME bi n/test Gi dKeyServer p" run
may be viewed in Appendix 2, Exhibit A2-2

"refTine" is the runtine (in seconds since 0Z, January 01, 1970) of the
requested grid(s).

"refTines" is (a pointer to the address of) the array of runtines (in
seconds since 0Z, January 01, 1970) available for the requested nodel and
scal e.

"sourceld" is (a pointer to) a string specifying a conbinati on of nodel
projection, and scale. Exanples include "avnNH', "nmesoEta212", and
"NGWR02". A current list of “sourceld” values can be obtained by running
programtest i dKeyServer with a command |ine argurment of “s” (just enter
“$FXA _HOVE/ bi n/test & i dKeyServer s” at the Unix command pronpt), or by
witing a short driver (main program) to call "gridSliceldLists"

(descri bed below) and then print out the "sourcelds" array it returns
Ei ther way, a considerabl e anount of output nay be generated, so it is
recommended you re-direct the output to a file, and then print the file
or viewit with an editor. A few sanple output lines froma

“$FXA _HOVE/ bi n/test & i dKeyServer s” run may be viewed in Appendix 2
Exhi bit A2-3.

The three APIs for accessing informati on about grids are:

voi d get Textual Units (
unsi gned | ong key , /[* input */
char **units) /* output */

void gridSliceGeolnfo (
unsi gned | ong key , /[* input */

char **geoFile , /* output */

-27

Table 4.1-1, co

int *n
int *n

nt.

X,
y)

void interpretGeolnfo (

char *geoFile

int nx
int ny
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat

int *projlndex

*central Lat
*central Lon
*rotation ,

fl oat
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat

The “get Textual Units” AP

*|atLL
*| onLL
*|at LR
*| onLR
*| at UL
*| onUL
*| at UR
*| onUR

*dx ,
*dy ,

*| at DxDy
*| onDxDy)

provi des the textua

grid specified by the calling argunent “key”.

value returned by “getGidSliceAccessKey”.
not the netCDF grid file
as a NULL pointer if no units information is available for the grid of
interest, and as an enpty string if the grid of interest
all ocate the nenory space for the “units” val ue,

virtual field table,

This function will

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

out put
out put

i nput

i nput

i nput

out put
out put
out put
out put
out put
out put
out put
out put
out put
out put
out put
out put
out put
out put
out put
out put

*/
*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

representation of units for a
For the “key” val ue,

use the
The units are read fromthe

The units string is returned

the caller’s responsibility to free the nenory space when done

The “gridSliceGeol nfo” AP

provi des the nane of the geo file (also called the

depictor file) needed to get a grid s navigation paraneters.

of the grid are also returned

i s di mensionl ess.
but

it

is

The di nensi ons

“key”, which is also the value returned by “get Qi dSliceAccessKey”.
narme returned has neither directory nor the “.sup” extension

will allocate the nenory space for the “geoFile” value, but

responsibility to free the nenory space when done

The “interpret Geol nfo” AP

it

The grid is specified by the calling argunent
The file

This function

is the caller’'s

provi des sixteen grid navigation paraneters for a

grid. The grid is specified by the calling argunents “geoFile”, *“

“ny” which were returned by “gridSliceCeol nfo”.

paraneters are defined in the next paragraph

The si xteen navigation

nx

and

Fol l owi ng are descriptions of the calling argunents for the above three APIs:

“central Lat” is the tangent

“central Lon” is the tangent

“dx” is the approximate x direction grid spacing in kiloneters

-28

latitude (in degrees north) of the projection

I ongitude (in degrees east) of the projection

June 2001

Table 4.1-1, cont.
“dy” is the approximate y direction grid spacing in kiloneters

“geoFile” is the name of the geographic information file (also called the
depictor file).

“key” is D2D's internal long integer identification nunber for the desired
nodel -scal e-1 evel -field conbination. For this calling argunent, use the
value returned by “getGidSliceAccessKey”.

“latDxDy” is the latitude (in degrees north) where dx and dy are valid

“latLL” is the latitude (in degrees north) of the lower left (south west)
corner of the grid.

“latLR’" is the latitude (in degrees north) of the lower right (south east)
corner of the grid.

“latUL” is the latitude (in degrees north) of the upper left (north west)
corner of the grid.

“latUR’" is the latitude (in degrees north) of the upper right (north east)
corner of the grid.

“l onDxDy” is the longitude (in degrees east) where dx and dy are valid

“lonLL” is the longitude (in degrees east) of the lower left (south west)
corner of the grid.

“lonLR’ is the longitude (in degrees east) of the lower right (south east)
corner of the grid.

“lonUL” is the longitude (in degrees east) of the upper left (north west)
corner of the grid.

“lonUR’ is the longitude (in degrees east) of the upper right (north east)
corner of the grid.

“nx” is the x or left-right (west-east) dinension of the grid
“ny” is they or bottomtop (south-north) dinmension of the grid
“projlndex” is the AWPS projection index.

“rotation” is the angle (in degrees) of the grid s positive y-axis with
respect to the central Lon neridian

“units” is the text units read fromthe virtual field table.

The APl to get the path (directory + file nane) of the netCDF file in which
grids of interest are stored is:

void getGidfilePath (
char *sourceld , /[* input */
long refTinme , /[* input */

-29

June 2001

Table 4.1-1, cont.
char **pat hNare) /* output */
Fol | owi ng are descriptions of the calling argunents for this API:

“pathNane” is (a pointer to) a string containing the full path (directory +
file name) in which the grids of interest are stored.

"refTine" is the runtine (in seconds since 0Z, January 01, 1970) of the
grid(s) of interest.

"sourceld" is (a pointer to) a string specifying a conbinati on of nodel
projection, and scale. Exanples include "avnNH', "nmesoEta212", and
"NGWR02". A current list of “sourceld” values can be obtained by running
programtest i dKeyServer with a command |ine argurment of “s” (just enter
“$FXA HOVE/ bi n/test & i dKeyServer s” at the Unix conmmand pronpt), or by
witing a short driver (main program) to call "gridSliceldLists"
(described below and then print out the "sourcelds" array it returns
Ei ther way, a considerabl e anount of output nay be generated, so it is
recommended you re-direct the output to a file, and then print the file
or viewit with an editor. A few sanple output lines froma
“$FXA _HOVE/ bi n/test & i dKeyServer s” run may be viewed in Appendix 2
Exhi bit A2-3.

The above API's shoul d provide all needed functionality for accessing grids in
the AWPS net CDF files, and navigation information for those grids. But to
use those APls, you nust have the “cfront” C++ conpiler. Mst |oca
applications devel opers do not have such access. Therefore, the

Met eor ol ogi cal Devel opnent Lab (MDL) is supplying the followi ng APl in

[awi ps/ adapt/ nav/i nc/ Navi gation. h (when calling fromQC, or
[awi ps/ adapt/nav/inc/ Navigation.H (when calling from C++)

to provide all necessary grid navigation infornmation

void get_grid_nav (

const char *grid_source , /[* input */
float *dx , /* output */
float *dy , /* output */
float *latl , /* output */
float *lat2 , /* output */
float *lonl , /* output */
float *lon2 , /* output */
long *nx , /* output */
long *ny , /* output */
long *projection , /* output */
long *relativity , /* output */
float *stdlatl , /* output */
float *angle2 , /* output */
float *truel at |, /* output */
float *align , /* output */
long *status); /* output */

-30

June 2001

Table 4.1-1, cont.

FORTRAN cal | ers need not | NCLUDE anything to use this API, but nmay view the
above naned files to see the function nanmes and cal li ng sequences. Both of
the include files named above require six other include files
hnHMC fileUtils. h
hmHMC i nterpUils. h
hmHMC_par seNum h
hmHMU_STATUS. h
hmHMUJ_dest royQoj ect . h
hmHWMJ stringWils. h
either directly or indirectly. These nay be obtained fromthe ML web site by
doi ng the foll ow ng:
1.First bring up the MOL hone page (see section 7, “OnLine Resources and
URLs”, for the URL);
2.Fromthere, click on the “AWPS LOCAL APPLI CATI ONS SUPPORT” link to bring up
the “AWPS LOCAL APPLI CATI ONS DEVELOPMENT” page
3.Fromthere, click on the “DOMLQAD UPLOAD' link to bring up the “Avail abl e
Files to Downl oad” page
4. Fromthere, click on the “C++ Navigati on Routines” choice, which will ftp
the above six include files (and a few other files as well) to you

Al (C++, C and FORTRAN) callers nust link to
[awi ps/ adapt/nav/lib/libNavigation.a

when building their executables. This APl searches the navigation file (an
ASCIl flat file called "Navigation.txt") for the navigational information for
the conbi nation of forecast nodel, map projection, and geographi c area of
coverage specified by the calling argument "grid_source", and returns that
information to the caller. The file "Navigation.txt" is stored in a directory
narmed by the UN X environnent variable "NAVFILE DIR'. The software reads
"NAVFILE DIR' to find and open "Navigation.txt". Therefore, "NAVFILE DR
nmust be correctly set to the conplete, absolute directory of "Navigation.txt"
before "get_grid_nav"' can be used. If "NAVFILE DIR" is incorrectly set, or
cannot be found, "get_grid _nav" will abort. The currently correct setting for
"NAVFILE DIR' is "/aw ps/adapt/nav/data/".

The calling argunents for "get_grid_nav", in al phabetical order, are as
fol |l ows:
"align" = (a pointer to)

(a) for polar stereographic and Lanbert conformal projections, the
vertical longitude; the east longitude (in degrees) parallel to the
nmap projection's positive y axis.

(b) for local stereographic, the rotation angle of the positive y axis in
degrees cl ockwi se fromnorth.

"angl e2" = (a pointer to)

(a) for a tangent cone projection, same as stdlatl

(b) for a secant cone projection, the second (furthest frompole) |atitude
(in degrees north) at which the secant cone cuts the earth

(c) for a stereographic projection, the longitude (in degrees east) of the
center of the projection. A value of +/-90 indicates polar
st er eogr aphi ¢

-31

June 2001

June 2001
Table 4.1-1, cont.

"dx" = (a pointer to) the left-right (west-east) grid spacing (in neters) at
the latitude "truel at"”

"dy" = (a pointer to) the bottomtop (south-north) grid spacing (in neters)
at the latitude "truelat".

"grid_source" = (a pointer to) a string specifying the conbi nati on of nodel
map projection, and geographic scale of the grid for which navigationa
information is wanted. Exanples include "avnNH', "nmesoEta212", and
"NGWR02". A current list of “grid_source” values can be obtai ned by
running programtestGidKeyServer with a command |ine argunent of “s”
(just enter “$FXA HOVE/ bin/testGidKeyServer s” at the Uni x command
pronpt), or by witing a short driver (main program to cal
"gridSliceldLists" (described below and then print out the "sourcelds"”
array it returns. Either way, a considerable anmbunt of output nay be
generated, so it is recommended you re-direct the output to a file, and
then print the file or viewit with an editor. A few sanple output |ines
froma “$FXA HOVE/ bi n/test & i dKeyServer s” run may be viewed in Appendi x
2, Exhibit A2-3. "grid_source" nmust be a C|language style string, that
is, the character immediately following the last (rightnost) printable
character of the string nust be CHAR(0) in FORTRAN, or NULL (= (char) 0)
in Cand C++.

"lat1l" = (a pointer to) the north latitude (in degrees) of the first or
lower left gridpoint.

"lat2" = (a pointer to) the north latitude (in degrees) of the last or upper
right gridpoint.

"lonl" = (a pointer to) the east longitude (in degrees) of the first or
lower left gridpoint.

"lon2" = (a pointer to) the east longitude (in degrees) of the last or upper
right gridpoint.

"nx" = (a pointer to) the nunber of gridpoints along a row (the
right-to-left or west-to-east edges) of the grid

"ny" = (a pointer to) the nunmber of gridpoints along a columm (the
bottomto-top or south-to-north edges) of the grid.

"projection" = (a pointer to) the integer GRIB code for the map projection
1 = Mercator

3 Lanbert confornal
5 = stereographic.

-32

Table 4.1-1, cont.

"relativity" = (a pointer to) an integer code for how vector conponents are
resol ved:

0 = vector conponents are resolved relative to easterly and northerly
directions.

1 = vector conponents are resolved relative to the defined grid in the
direction of increasing x and y.

"status"
are:

(a pointer to) get _grid nav's return status. Possible val ues

0 = The requested navigation data was successfully found, extracted
and ret urned.

2 = The software did not recognize the input "grid_source" val ue.

6 = An attenpt to allocate nenory failed. Most likely, insufficient
nmenory was avail abl e.

7 = Most likely, the file "Navigation.txt" is corrupted.

8 = The file "Navigation.txt" could not be read. This is not
necessarily a problemwth the file.

9 = Indicates an undefinable error, possibly a bug in the software

"stdlat1l" = (a pointer to):

(a) for a tangent cone projection, the tangency latitude; the latitude (in
degrees north) at which the earth is tangent to the map projection

(b) for a secant cone projection, the first (closest to pole) latitude (in
degrees north) at which the secant cone cuts the earth

(c) for a stereographic projection, the latitude (in degrees north) of the
center of the projection

“truelat" = (a pointer to) the north latitude (in degrees) at which the grid
spacing (dx and dy) is defined. For AWPS projections, "truelat" =
"stdl at1".

Navi gational information that is not applicable to the specified map
proj ection and geographic area of coverage is returned with the val ue -9999.0
for type "float", or -9999 for type "long".

This APl is designed to be callable fromC++, C, and FORTRAN. Sinpl e exanpl es
may be viewed in the Navigation man page or in the Navigation test drivers
(navtest.C for C++, navtest.c for C and navtest.f for FORTRAN, note that
navtest.f will also need itlen.f). These may be obtained via the sane
procedure given above for getting the six include files needed by Navigation.h
and Navigation. H

4,.2.2.5 Existing software (APIs) for witing netCDF grid files

Def err ed.

-33

June 2001

Table 4.1-1, cont.
4.2.3 Point Data (Section/subsections current for Build 4.3)

Al decoded point data are stored in files in subdirectories under the

$FXA DATA/ point directory. $FXA DATA is currently /datal/fxa, and this disk
partition is globally (NFS) mounted such that while the data only reside on a
particular nmachine (the ds), the directories can be “seen” fromany nachi ne
(ws3, as2, etc.) inside the AWPS LAN, the sane as if they were present on
that machine. This disk partition is also mrrored (redundantly naintained)
on both dsl1 and ds2 for backup purposes, so that in case of failure of dsl
AWPS can failover to ds2 with little or no loss of critical data

4.2.3.1 METAR Data
4.2.3.1.1 File nam ng conventions

The METAR data files are found under the $FXA DATA point/metar directory. The
/ Raw subdirectory ($FXA _DATA point/ metar/ Raw) hol ds the reports witten

bef ore decoding, and /Bad/ is where the reports that were not correctly
decoded are noved. The /netcdf/ subdirectory contains the net COF fornat
storage files, and the binary plot storage files are kept in /plot/. A /tnp/
subdirectory (nornmally enpty) also exists to hold incom ng METAR data unti

the nessage transm ssion is conpleted, at which tine the data are transferred
to the /Raw subdirectory.

The convention for nanes of files in these directories is YYYYMVDD hhmm where
hhmmis the nomnal tinme in UTC (i.e., Z), to the hour, of the start of the
data. For exanple, file “19970206_1600" contains the 16Z data for Feb 06,
1997. The METAR nominal tine is such that each file holds 1 hour's worth of
reports, for report tines from15 mnutes before the hour to 44 mnutes after
the hour. For exanple, the 1200Z file contains METARs with reporting tines
from 1145Z t hrough 1244Z.

4,2.3.1.2 Oganization of files

METAR data are stored in both binary and net COF formats. The binary plotfiles
are utilized by D2D depictabl es for display purposes, while the netCDF files
are intended to be accessed by other applications. The raw data arrive in
text format as one singular report or as a collective report. The collective
report contains data fromseveral stations. These data are ingested and
stored in the /Raw directory. As each report or collective is witten to
disk, a notification is sent to the Conms Router which then notifies the Text
Controll er, which then pings the METAR decoder that there are data to be
processed. The decoder will process every file in the directory, not just the
one for which it received a notification

The raw METAR file is deleted once the report data are successfully decoded
and stored. |If a decoding error occurred, then the raw file is noved to the
/Bad/ directory. The decoder then noves on to the next file in the /Raw
directory. Wiuen it has finished processing all the current METAR files in the
/Raw directory, the decoder waits for the next notification to arrive. The
routine that wites the decoded METAR data to bhinary plot and netCDF files is
dntStoreMETAR PlotInfo.C. It is called for every successfully decoded METAR
For additional information on the decoding process, refer to Chapter 7 of the
WFO- Advanced Overview. The decoded METAR el ements stored in binary plotfiles

-34

June 2001

Table 4.1-1, cont.

and net CDF files,

and their units and fornmat,

and 4.2.3.1.2-2, respectively.

June 2001

are shown in Tables 4.2.3.1.2-1

frane. Any code that
wher ever possi bl e,

NOTE: Current plans are to discontinue use of plotfiles as a duplicate
manner of storage for METAR and other point data in the Build 5.x tine
is witten to access decoded point data shall,

read only the net COF data files.

Table 4.2.3.1.2-1.
| anguage types.

METAR data stored in a binary plotfile.

Data types are G

METAR BI NARY PLOTFI LE VARI ABLES

NANVE UNI TS / DESCRI PTI ON DATA TYPE
stationl D char of max length 5
ti neCbs seconds since 1-1-1970 doubl e
report Type char of max length 6
skyCover char array of 6 by 5

skyLayer Base

f eet

float array of 6

visibility

statute mles

fl oat

pr esWat her

char of max length 21

sealevel Press mllibars fl oat
t enperat ure degrees F fl oat
dewpoi nt degrees F f| oat
wi ndDi r tenths of degrees true fl oat
wi ndSpeed knot s fl oat
wi ndCust knot s fl oat
preci plHour mllineters fl oat
pr eci p3Hour mllineters fl oat
pr essChangeChar Pressure tendency change char. short
pr essChange3Hour mllibars short

-35

June 2001
Table 4.1-1, cont.

Table 4.2.3.1.2-2. METAR data stored in a netCDF file. The variables wolD,
| ati tude, longitude, elevation and tineNom nal do not appear in METARs, but
are derived fromother sources. The Iength of the character strings
includes the null termnator: subtract 1 fromthe stated length to get the
maxi mumstring length. Data types are G| anguage types.

METAR NETCDF FI LE VAR ABLES

NANME UNI TS / DESCRI PTI ON DATA TYPE

wnol D

| ong

st ati onNane

char of max length 5
(4+1)

| atitude deci nal degrees, North fl oat

| ongi t ude deci mal degrees, East f1 oat

el evation neters f1 oat

ti meCbs METAR observation time, doubl e
seconds since 1-1-1970

t i meNom nal METAR nomi nal report hour, doubl e

seconds since 1-1-1970

report Type [METAR or SPEC] char of max length 6
(5+1)

aut oSt ati onType char of max length 6
(5+1)

skyCover [CLR FEW SCT, BKN, OVC, SKC array of 6 char of max
length 8 (7+1)

skyLayer Base meters float array of 6

visibility neters f1 oat

pr es\Wat her usi ng FMH 1 weat her codes char of max length 25

(24+1)
sealevel Press pascal s fl oat
t enperature degrees Kelvin fl oat
t enpFr onirent hsl tenperature, in Kelvin fl oat
dewpoi nt degrees Kelvin fl oat
dpFr onTent hst dewpoint, in Kelvin fl oat

1 Nane is inconsistent with actual st orage units.

-36

Table 4.1-1, cont.

June 2001

METAR NETCDF FI LE VAR ABLES
NAVE UNI' TS / DESCRI PTI ON DATA TYPE
wi ndDi r degrees true fl oat
wi ndSpeed nmet er s/ second fl oat
wi ndCust nmet er s/ second f1 oat
altineter pascal s fl oat
m nTenp24Hour in Kelvin fl oat
maxTenp24Hour in Kelvin fl oat
preci plHour meters fl oat
preci p3Hour nmeters fl oat
pr eci p6Hour meters fl oat
preci p24Hour neters fl oat
pr essChangeChar pressure tendency change short
character (FMH 1 Table 12-7)
pr essChange3Hour pascal s short
correction corrected METAR indi cator: | ong
1 = correction, O = origina
r awETAR raw coded METAR/ SPECI text char of max length 256
message (255+1)

4,2.3.1.3 Supporting files

Static station information for METARs is found in the ASCII text file
/src/dataMgnt/ metar Stationlnfo.txt, and includes the follow ng

nunber 1D | at | on el ev station nane country MIR or SAO
(10) (5) (sn2.3) (sn3.3) (5) (36) (2) (3)
(deg. N (deg. B) (m

The information in parentheses refers to the length and format of the entries

This file is the source of the wiold, latitude, |ongitude, and el evation data
values witten to the METAR net CDF data file.

4.2.3.2 RAOB DATA
4,2.3.2.1 File nam ng conventions
Upper air data (Radi osonde Cbservations, commonly referred to as "RAOB) will

be witten in both netCDF and plotfile formats. Only the plotfiles are used
in Build 4.3, with netCDF storage to be added in Build 5.0. RAOB data files

-37

June 2001
Table 4.1-1, cont.

will be stored in $FXA DATA poi nt/raob/ netcdf and $FXA _DATA poi nt/raob/ pl ot
directories, respectively. The convention for nanes of files in these
directories is YYYYMVDD TI ME, where TIME is the UTC (i.e., 2Z2) time of the
start of the data (e.g., 19970206_1200 contai ns the 12Z data for Feb 06,

1997). Each file holds 12 hours worth of data, so the 0000Z plotfile contains
all the RAOB data from 0000Z through 1159Z, and the 1200Z file contai ns 1200Z
t hrough 2359Z dat a.

4,2.3.2.2 Oganization of files

RACB data are currently received through the SBN and tenporarily stored on

di sk as encoded BUFR nessages in the /data/fxalispan/bufr/raob directory.
ASCI1 (text) RACB data are no |longer decoded in AWPS, but Mandatory and
Significant Level RAOB text reports are stored in the text database (Sec.
4.2.7) under the product identifiers cccMANkxxx and cccSGE.xxx, respectively.
As data are received, the RaobBufrDecoder is notified to decode the nessage
and store it in the data files. As data becone avail abl e for decoding,
RaobBuf r Decoder reads and decodes the BUFR data file and stores the data in
the appropriate fields as a plotfile. As new data arrive, the decoder

det erm nes whether the data are new, contain differences fromearlier reports,
etc., and appends or nmerges themwith the existing data for that particul ar
station and observation time. After the BUFR file is decoded and stored in
(net CDF and) plotfile formats, the decoder deletes the file fromthe
directory. Table 4.2.3.2.2-1 shows the RAOB data stored in the (netCDF files
and) plotfiles.

Table 4.2.3.2.2-1. RAOB data stored in (netCDF files and) binary plotfiles.
The length of the character strings includes the null termnator. The first
nmandatory level is the surface level. Data types are C | anguage types.

RAGB BI NARY PLOTFI LE VARI ABLES

NAVE UNI TS / DESCRI PTI ON DATA TYPE

wnoSt aNum | ong

st aNane char array of 6 bytes
st aLat station latitude, in degrees N fl oat

stalon station longitude, in degrees E fl oat

st aEl ev neters fl oat

synTi e seconds since 1-1-1970 doubl e

nurvand nunber of mandatory |levels - | ong

maxi num of 22

nunti gT nunber of significant |evels | ong
with respect to (wt)
Tenperature - nmax 150

nunsSi gw nunber of significant |levels | ong
wt Wnd - nmaxi rumof 76

-38

Table 4.1-1, cont.

June 2001

RAGB BI NARY PLOTFI LE VARI ABLES

NAVE UNI TS / DESCRI PTI ON DATA TYPE

nunvand nunber of maxi mumwi nd | evel s | ong

numrr op nunmber of tropopause |evels | ong

rel Ti ne Soundi ng Rel ease tine, in doubl e
seconds since 1-1-1970

sondTyp I nstrunent type | ong

pr Man Pressure - Mandatory level, in float array of 22
mllibars

ht Man Ceopotential - Mandatory |evel, float array of 22
in meters

t pMan Tenperature - Mandatory |evel, float array of 22
i n Kel vins

t dMan Dew Poi nt Depression - float array of 22
Mandatory level, in Kelvins

wdvan Wnd Direction - Mandatory float array of 22
I evel , in degrees true

wsVan Wnd Speed - Mandatory level in float array of 22
et er s/ second

prSigT Pressure - Significant |evel float array of 150
wt Tenperature, in nillibars

tpSi gT Tenperature - Significant |evel float array of 150
wt Tenperature, in Kelvin

tdSigT Dew Poi nt Depression - float array of 150
Significant |level wt
Tenperature, in Kelvin

ht Si gwW Ceopotential - Significant float array of 76
level wt Wnd, in neters

wdSi gW Wnd Direction - Significant float array of 76
level wt Wnd, in degrees true

wsSi gW Wnd Speed - Significant |evel float array of 76
wt Wnd, in meters/second

prTrop Pressure - Tropopause level, in float array of 4
mllibars

t pTrop Tenperature - Tropopause |evel, float array of 4
in Kel vins

tdTrop Dew Poi nt Depression - float array of 4

Tropopause |evel, in Kelvins

-39

June 2001

Table 4.1-1, cont.

RAGB BI NARY PLOTFI LE VARI ABLES

NAVE UNI TS / DESCRI PTI ON DATA TYPE

wdTr op Wnd Direction - Tropopause float array of 4
I evel , in degrees true

wsTr op Wnd Speed - Tropopause |evel, float array of 4

in meters/second

pr MaxW Pressure - Maxi mumwi nd | evel, float array of 4
inmllibars

wdVaxW Wnd Direction - Maxi mum w nd float array of 4
I evel , in degrees true

ws MaxW Wnd Speed - Maxi mum wi nd float array of 4
level, in neters/second

4.2.3.2.3 Supporting files

RAOB id and location information is found in src/dataMnt/raobStationl nfo.txt,
and includes the follow ng fields:

wno _nunber stn | at lon el ev |l ocation or type
(10 digits) (5 char) (deg. N) (deg. E) (meters) (20 char) (2 char) (4 char)

The information in parentheses refers to the Iength and format of the entries.
The variable “or” refers to Country of Oigin.

Exanpl es are:
0000070026] BRW | 71. 30| - 156. 78| 12| BARROW POST- ROGE, AK| US| RACB
0000072357] OUN | 35.23] -97.47] 362| NORVAN, K | US| RACB
0000072363| AMA | 35. 23| -101. 70] 1094| AVARI LLO ARPT, TX | US| RACB
0000072364| EPZ | 31.87|-106. 70] 1252] SANTA TERESA, NM | US| RACB

4.2.3.3 Lightning Data

4.2.3.3.1 File naning conventions

The lightning data files are found i n $FXA DATA poi nt/binLightning/. The plot

data files are stored in the /plot/ subdirectory, and the netcdf data files

are stored in the /netCDF/ subdirectory.

4.2.3.3.2 Oganization of files

Li ghtning data collected by the National Lightning Detection Network (NLDN)

and are received on the SBN network in an encoded binary format. After the
lightning data are decoded they are stored in plotfiles and net COF data fil es.

-40

June 2001
Table 4.1-1, cont.
The variables for the netCDOF file and the plotfile are the sane. The nunber
of records in the file is the nunber of lightning strikes. Lightning data in

the file are shown in Table 4.2.3.3.2-1.

Table 4.2.3.3.2-1. Lightning data stored in netCDF and binary plotfiles. Al
data types are G-l anguage types.

NAME UNI TS / DESCRI PTI ON DATA TYPE
| at strike latitude, in degrees north fl oat
| on strike longitude, in degrees east fl oat
time time of strike, in seconds since 1-1-1970 doubl e
sigStr nornal i zed signal strength and polarity, in Kiloanps fl oat
mul t multiplicity of the flash | ong

4.2.3.3.3 Supporting files

None.

4.2.3.4 Wnd Profiler Data

4.2.3.4.1 File naning conventions

The wind profiler data files are found in the $FXA DATA poi nt/profiler/plot
(binary plotfiles), $FXA DATA point/profiler/netcdf (netCDF files) and
$FXA_DATA/ poi nt/profiler directories.

4.2.3.4.2 Oganization of files

Wnd profiler data elenents in netCDF and plotfiles are identical. The
information is stored in wind profiler files is shown in Table 4.2.3.4.2-1.

Table 4.2.3.4.2-1. Wnd profiler data stored in netCDF and binary plotfiles.
Data types are C | anguage types.

W ND PRCFI LER FI LE VAR ABLES
NAVE UNI TS / DESCRI PTI ON DATA TYPE
wroSt aNum WVO numeric station ID | ong
st alLat Station latitude, degrees N fl oat
stalLon Station | ongitude, degrees E fl oat
st aEl ev El evati on above MSL, in neters fl oat
wi ndSpeedsSf ¢ Surface wind speed, in f1 oat
net er s/ second

-41

June 2001

Table 4.1-1, cont.

W ND PRCFI LER FI LE VAR ABLES

NAVE UNI TS / DESCRI PTI ON DATA TYPE
wi ndDi r Sfc Surface wind direction, in | ong
degr ees
pressure Pressure reduced to MsL, in hPa f1 oat

(mllibars)

t enperature Surface tenperature, in Kelvin fl oat

rai nRate Surface rainfall rate, in fl oat
kg/ met er2/ second (mmi sec)

rel Hum dity Surface relative humdity, in | ong
per cent
subnode NOAA wi nd profiler subnode | ong

information, in code

st aNane Al phanuneric stati on name char array of length
6 (5+1)
ti meCos Time of observation, in seconds doubl e

since 1-1-1970

| evel s Hei ght above station, in neters float array of 43
| evel s

| evel Mode Wnd profiler node information long array of 43
| evel s

uvQual i t yCode NOAA wi nd profiler quality long array of 43
control test results for u- and | evel s

v- conponent s

consensusNum Consensus nunber (hourly data long array of 43
only) | evel s
uConponent u (eastward) conponent, in float array of 43
net er s/ second | evel s
vConponent v (northward) conponent, in float array of 43
net er s/ second | evel s
Hor i zSpSt dDev Hori zontal w nd speed standard float array of 43
devi ation, in neters/second | evel s
peakPower Spectral peak power, in dB long array of 43
| evel s
wConponent w (upward) component, in float array of 43
net er s/ second | evel s
Ver t SpSt dDev net er s/ second float array of 43
| evel s

-42

June 2001

Table 4.1-1, cont.

4.2.3.4.3 Supporting files
The following profiler info is found in src/dataMgnt/profilerStationlnfo.txt:

#name wrol D | at lon ht
(5 char) (5 digits) (deg. N) (deg. E) (neters)

The information in parentheses refers to the length and format of the entries.
Exanpl es are:

RVDNL| 74433| 40. 08| - 100. 65| 800
LTHW| 74551] 39. 57| -94.18| 297
TCUNB| 74731| 35. 08| - 103. 60| 1241

4.2.3.5 Marine Report Data

Decoded narine reports of various types are stored together in a single type
of netCDF file. CQurrently, GMAN, ship, and fixed and drifting buoy reports
that are available fromthe SBN data feed are decoded and stored in the hourly
mari ne net CDF files.

4.2.3.5.1 File nam ng conventions

The marine report data files are found in the $FXA DATA point/ mariti me/ net cdf
directory. The convention for nanes of files in these directories is
YYYYMVDD_hhnm where hhmmis the nominal time in UTC (i.e., Z), to the hour,
of the start of the data. For exanple, file “19970206_1600" contains the 16Z
data for Feb 06, 1997. Like METARs, the marine reports nomnal time is such
that each file holds 1 hour's worth of reports, for report tines from15

m nutes before the hour to 44 ninutes after the hour.

4,2.3.5.2 Oganization of files

Decoded narine data elenents for all marine platforns (land, ship, buoy; fixed
and noving) are stored in hourly netCDF files. There is no correspondi ng
nmarine reports plotfile after Build 4.1. The information stored is as defined
in Table 4.2.3.5.2-1.

Table 4.2.3.5.2-1. Marine report data stored in netCDF files. Data types are
C- | anguage types.

MARI NE NETCDF FI LE VARI ABLES

NAME UNI TS / DESCRI PTI ON DATA TYPE

stati onNane Station, Buoy, or Ship call letters char of max
length 9 (8+1)

| atitude deci nal degrees, positive North f | oat

| ongi t ude deci nal degrees, positive East f | oat

-43

Table 4.1-1, cont.

June 2001

MARI NE NETCDF Fl LE VARI ABLES

NAME UNI' TS / DESCRI PTI ON DATA TYPE
el evation station hei ght above MBL, neters fl oat
ti meCbs date/tinme of observation, seconds doubl e

since 1-1-1970 (unix ticks)
ti meNom nal nom nal date/hour of data in file, doubl e
seconds since 1-1-1970 (unix ticks)
dat aPl at f or niType 0 = stationary (noored buoy, CVAN short
1 = nmoving (drifting buoy or ship)
tenperature air tenperature, kelvin f | oat
dewpoi nt kel vin f | oat
wet Bul bTenper at ur e kel vin fl oat
sealevel Press pascal f | oat
pr essChangeChar 3 Hour pressure change character short
pr essChange3Hour pascal fl oat
wi ndDi r degree fl oat
wi ndSpeed net er/ sec fl oat
w ndCust neter/sec f1 oat
visibility net er fl oat
t ot al G oudCover Fraction of sky covered by cl ouds f | oat
tenths
cl oudBaseHei ght Hei ght category of |owest cloud short

| ayer:

0="0 to 100 ft";

"200 to 300 ft";

= "400 to 600 ft";

= "700 to 900 ft";

= "1000 to 1900 ft";

"2000 to 3200 ft";

= "3300 to 4900 ft";

= "5000 to 6500 ft";

= "7000 to 8000 ft";

= "8500 or higher or no clouds"
-1 = "unknown or bel ow sfc of stn";

© oo ~NO O WNBE
1

pr es\Wat her

Present Weather, FMH1 char. codes

char of max
length 26
(25+1)

-44

Table 4.1-1, cont.

June 2001

MARI NE NETCDF Fl LE VARI ABLES

NAVE UNI TS / DESCRI PTI ON DATA TYPE
| owLevel d oudType Low |l evel cloud type, FMH+2 table short
(values 1-9), and 0 (no |ow cl ouds)
or -1 (obscured)
m dLevel d oudType M ddl e | evel cloud type, FWVH2 short
table (values 1-9), and 0 (no
m ddl e clouds) or -1 (obscured)
hi ghLevel d oudType H gh level cloud type, FMH+2 table short
(values 1-9), and 0 (no high
clouds) or -1 (obscured)
preci plHour 1 Hour precipitation, meters f | oat
preci p6Hour 6 Hour precipitation, nmeters fl oat
preci pl2Hour 12 Hour precipitation, meters f | oat
preci p18Hour 18 Hour precipitation, meters fl oat
preci p24Hour 24 Hour precipitation, nmeters f | oat
pl at f or nTrueDi recti on Data platformtrue direction of f | oat
novenent, degrees
pl at f or Mt ueSpeed Data platformtrue speed of fl oat
novenent, mneter/sec
seaSur faceTenp Sea surface tenperature, kelvin f | oat
wavePeri od Wave period, seconds fl oat
waveHei ght Wave height, neters f | oat
hi ghResWaveHei ght H gh-resol uti on wave hei ght, neters fl oat
equi vW ndSpeed10m Equi val ent wi nd speed at 10 neters f | oat
equi vW ndSpeed20m Equi val ent wi nd speed at 20 neters fl oat
maxW ndSpeedTi ne Ti ne of observed maxi num w nd doubl e
speed, seconds since 1-1-1970 (uniXx
ticks)
maxW ndSpeed Maxi mum wi nd speed, neters/sec fl oat
maxW ndDi r ecti on Wnd direction for wind speed f | oat

maxi mum degrees

rawvaritine

Raw maritime ASCI| nessage

char of max
| ength 257
(256+1)

-45

Table 4.1-1, cont.
4.2.3.5.3 Supporting files

The CDL file that defines the marine netCDF data file is located in the ASC |
file $FXA HOVE/ data/ maritine.cdl on the ds. The file naritinmeStationlnfo.txt,
in the same directory, defines the station ID (call letters), latitude,

| ongi tude, elevation, full station name, country of origin, and report type
for the marine stations whose decoded and raw reports are contained in the
marine netCOF files. Included cooment |ines docunment the file contents. The
file mariti neWwkCodes.txt, in the same directory, is a | ookup table defining
the rel ati onship between the FMH 2 nunerical weather codes (e.g., 67) in the
encoded marine reports, and the FMH 1 character weather codes (e.g., FZRA)
stored in the marine netCDOF file in the presWather variable. The FMH+2
nureri cal codes are converted to FMH 1 character codes before storage in the
net COF file to support weather synbol plotting in station nodel plots of

nmari ne report data on the D2D di spl ay.

4.2.3.6 LDAD (Local Data Acquisition and D ssem nation)

A full description of AWPS data acquisition and storage under the LDAD
subsystemis beyond the current scope of this docunent. The reader is
referred to Chapter 8 of the AWPS System Manager’s Manual for a description
and guide to local data acquisition via LDAD. The follow ng sections will
descri be the |l ocation and fornmat of decoded data acquired via LDAD and stored
i nsi de of AWPS.

4,2.3.6.1 File nam ng conventions

Mesonet, cooperative observer, and other local (i.e., non-SBN and non- WAN)
observational data acquired via the LDAD subsystemare stored in one of three
types of LDAD netCDF data files after decoding and processing. The three
types of LDAD netCDF files are called hydro, nesonet, and nanual, and consi st
of hourly data files in the directories $FXA_DATA/ LDAD hydr o/ net CDF,

$FXA DATA/ LDAD nesonet / net CDF, and $FXA DATA/ LDAD manual / net CDF, respectively.
A matching /plot subdirectory nmay be found on AWPS for each of the 3 file
types at the /netCDF level. This is a holdover fromearlier designs.
Plotfiles are not inplenented for LDAD data in Build 4.3, and no plans exi st
to add them

Each mesonet net CDF data file will have a conpanion file of original decoded
data, augnmented with quality-control (QC) information and the results of NMBAS
(MAPS Surface Analysis Systen) QC checks that have been perforned on the data.
The QC ed nmesonet data are |ocated under the $FXA DATA/ LDAD nesonet/ qc
directory. Hydro and nmanual LDAD data currently are not quality controlled
under MBAS.

The convention for nanes of files in the four LDAD net COF data directories is
YYYYMVDD_hhmm where hhnmmis the nominal tine in UTC (i.e., Z) tinme, to the
hour, of the start of the data. Each file holds 1 hour's worth of reports,
for report times occurring within the hour (i.e., for 0 mnutes, 0 seconds to
59 m nutes, 59 seconds after the given hour), as deternmined by the tine stanp
within the report. In Build 4.3 installed configuration, the basic (tenporal
and validity) QC results are updated every five mnutes, beginning at three

m nutes past the hour, only for the decoded observations recei ved and stored
during the previous five mnutes. The spatial QC check is performed only once

- 46

June 2001

Table 4.1-1, cont.

per hourly file, at 18 minutes past the hour. Any observations received and
stored after 18 minutes past the hour will have no spatial QC check results in
the QC netCDF file, only basic QC results. See your System Admi nistrator to
verify the current QC update schedul es at your site.

4,.2.3.6.2 Oganization of files

The three tables that followin this section describe the contents of the LDAD
hydro, nesonet, and manual netCDF files. The LDAD QC nesonet file is too
extensive to be summarized in these tables. Refer directly to the COL file

[awi ps/ f xal/ | dad/ MBAS/ f sl par ms/ QOresonet. cdl, | ocated on the asl nachi ne, which
defines the variables and the interpretation of their values w thin Q nesonet
LDAD net CDF fil es.

June 2001

Table 4.2.3.6.2-1.

Hydr ol ogi cal

types are C | anguage types.

data stored in LDAD hydro net CDF files. The

length of the character variables is inclusive of the null termnator. Data

LDAD HYDRO NETCDF VARI ABLES

NAVE UNI TS / DESCRI PTI ON DATA TYPE

providerld Data Provider Station ID char of nmax
length 12

nuneri cWVO d Nuneric WMO i dentification nunber | ong

stationld Al phanumneric station Id char of nmax
length 11

st ati onNane Al phanuneric station nane char of nmax
| ength 51

handbook5I1 d Handbook 1d (AFCS id or SHEF id) char of max
length 11

honeWFO Hone WFO I d for the LDAD data char of max
length 4

stationType LDAD hydro station type char of max
length 11

dat aProvi der LDAD hydro data provider char of max
length 11

| atitude Deci mal degrees north f 1 oat

| ongi t ude Deci mal degrees east f1 oat

el evation Met er f 1 oat

observationTi ne Time of observation, seconds since doubl e

1/1/ 1970
reportTi me Time data was processed by the doubl e

provi der, seconds since 1/1/1970

-47

June 2001

unknown time period, mm

Table 4.1-1, cont.
LDAD HYDRO NETCDF VAR ABLES
NAME UNI' TS / DESCR PTI ON DATA TYPE
recei vedTi me Tinme data was received, seconds doubl e
since 1/1/1970
river St age Met er fl oat
riverFl ow Met er3/ Second f1 oat
ri ver Report ChangeTi nme Tine of last new river stage/flow doubl e
report, seconds since 1/1/1970
preci p5mn m nute preci p accunul ati on, nm fl oat
preci plhr 1 hour precip accunul ati on, mm fl oat
preci p3hr 3 hour precip accurul ation, mm f1 oat
preci p6hr 6 hour precip accumul ati on, mm f1 oat
preci pl2hr 12 hour precip accumul ati on, mm f 1 oat
preci p24hr 24 hour precip accurul ation, mm f1 oat
preci pAccum Preci p accurmul ation with an f 1 oat

rawlessage

Raw t ext LDAD hydro report

char of max
I ength 256

Table 4.2.3.6.2-2.

stored in LDAD nesonet net CDF files.

As in Table 4.2.3.6.2-1, but for autonmated nesonet data

LDAD MESONET NETCDF VARI ABLES

NAME UNI TS / DESCRI PTI ON DATA TYPE

providerld Data provider station ID char of max
| ength 12

stationl D Al phanureric station ID char of max
length 6

handbook5I1 d Handbook 1d (AFCS id or SHEF id) char of max
length 6

st ati onNane Al phanuneric stati on name char of max
I ength 51

homeWFO Hone WFO I d for the LDAD data char of max
length 4

nurrer i cWVO d Nurreric WMO i dentification nunber | ong

-48

Table 4.1-1, cont.

June 2001

NANME

LDAD MESONET NETCDF VAR ABLES

UNITS / DESCRI PTI ON

DATA TYPE

stationType

LDAD rmesonet station type

char of max

length 11
dat aProvi der LDAD data provi der char of max
length 11
| atitude Degree north f1 oat
| ongi t ude Degr ee east fl oat
el evation Met er fl oat
dat aPl at f or nType Data Pl atformtype short
pl at f or nTrueDi recti on Degrees / Data platformtrue fl oat
direction
pl at f or nTr ueSpeed Meter/second - Data platformtrue f1 oat
speed
observati onTi ne Date and tinme of observation, doubl e
seconds since 1-1-1970
reportTi me Date and tinme data were processed doubl e
by the data provider, seconds since
1-1-1970
recei vedTi me Date and tinme the data were doubl e
recei ved, seconds since 1-1-1970
tenperature Kel vi n fl oat
t enpChangeTi ne Time of |ast tenperature change, doubl e
seconds since 1-1-1970
dewpoi nt Kel vin f1 oat
wet Bul bTenper at ure Kel vi n fl oat
rel Humdity Per cent f1 oat
r hChangeTi ne Rel ative Hum dity tine of |ast doubl e
change, seconds since 1-1-1970
stationPressure Pascal fl oat
st ati onPressChangeTi e Station pressure tinme of |ast fl oat
change, seconds since 1-1-1970
sealevel Pressure Pascal fl oat
pr essChangeChar Character of pressure change short
pr essChange3Hour Pascal / 3 hour pressure change fl oat

- 49

Table 4.1-1, cont.

LDAD MESONET NETCDF VAR ABLES

NAVE UNI TS / DESCRI PTI ON DATA TYPE
altimeter Pascal f1 oat
wi ndDi r Degr ee fl oat
wi ndDi r ChangeTi ne Wnd direction time of |ast change, doubl e
seconds since 1-1-1970
wi ndSpeed Met er / Second fl oat
wi ndSpeedChangeTi e Wnd speed time of |ast change, doubl e
seconds since 1-1-1970
w ndCust Met er / Second f1 oat
wi nd@ust ChangeTi e Wnd gust tine of |ast change, doubl e
seconds since 1-1-1970
windDirMn Degree / Wnd direction at m ni num f1 oat
wi ndspeed
wi ndDi r Max Degree / Wnd direction max fl oat
skyCover Sky Cover group char array of
6 by 8
skyLayer Base Meter / Sky cover |ayer base float array of
6
visibility Met er f1 oat
t ot al G oudCover Tenths / Fraction of sky covered by f| oat
cl ouds
cl oudBaseHei ght Hei ght of the | owest cloud |ayer short
pr es\W\at her Present weat her char of max
I ength 25
| owLevel d oudType Low | evel cloud type short
m dLevel d oudType M ddl e | evel cloud type short
hi ghLevel d oudType H gh | evel cloud type short array of
3
maxTenpRecor dPeri od Maxi mum t enper at ure recordi ng short array of
peri od 3
maxi munfTenper at ur e Maxi mum t enper at ur e float array of
3
m nTenpRecor dPeri od M ni num t enper at ure recordi ng short array of
peri od 3

-50

Table 4.1-1, cont.

NANME

LDAD MESONET NETCDF VAR ABLES

UNITS / DESCRI PTI ON

DATA TYPE

m ni munTenper at ur e

Kelvin / Mninmmtenperature

float array of

3

preci pAccum mm fl oat

preci pRat e Met er / Second f1 oat

preci pType Precipitation type short array of
2

preciplntensity Precipitation intensity short array of
2

ti neSi nceLast Pcp Tine since |ast precip, seconds doubl e

since 1-1-1970
sol ar Radi ati on Watt/ Meter2 fl oat
sol ar RadChangeTi ne Sol ar Radiation time of |ast doubl e
change, seconds since 1-1-1970

seaSur f aceTenp Kel vi n fl oat

wavePeri od Second f1 oat

waveHei ght Met er f| oat

rawlessage Raw t ext LDAD nesonet nessage char of max
I ength 512

testl User defined paraneter - test # 1 char of max
I ength 51

test2 User defined paraneter - test # 2 char of max
length 51

test3 User defined paraneter - test # 3 char of max
I ength 51

test4 User defined paraneter - test # 4 char of max
length 51

testb User defined paraneter - test # 5 char of max
I ength 51

test6 User defined paraneter - test # 6 char of max
I ength 51

test?7 User defined paraneter - test # 7 char of max
I ength 51

test8 User defined paraneter - test # 8 char of max

I ength 51

-51

Table 4.1-1,

cont.

UNITS / DESCRI PTI ON

LDAD MESONET NETCDF VAR ABLES

DATA TYPE

test9

User defined paraneter - test # 9

char of max
length 51

Table 4.2.3.6.2-3.

As in Table 4.2.3.6.2-3, but for cooperative and dial-in
data stored in LDAD manual net CDF fil es.

LDAD MANUAL NETCDF VARI ABLES

NAMVE UNI TS / DESCRI PTI ON DATA TYPE
providerl D Data provider station ID char of max
| ength 12
stationl D Al phanureric Station ID char of max
length 11
stati onNane Station location identifier char of max
I ength 51
homeWFO Home WFO Id for the LDAD data char of max
length 4
uni t sCode Units Code short
|l atitude Deci mal degrees north fl oat
| ongi t ude Deci mal degrees east fl oat
el evation neters fl oat
observationTi ne seconds since 1-1-1970 doubl e
codelO Current 24 hour precipitation total, f| oat
i nches
codell Incremental precip since previous 7 a.m, fl oat
i nches
codel2 Precip criteria report fromflash flood fl oat
observer, inches
codel3 4 hr precipitation total at previous 7 fl oat
a.m criteria report, inches
codeld 24 hr precipitation total at 7 a.m two fl oat
day ago, inches
codel5 Stormtotal precipitation, inches fl oat
codel6 Weekly total precipitation, inches fl oat
codel? Monthly total precipitation, inches fl oat

-52

Table 4.1-1,

cont.

LDAD MANUAL NETCDF VARl ABLES

NAME UNI TS / DESCRI PTI ON DATA TYPE
codel8 Of-Tine precipitation report, inches fl oat
codel9 Short intense precipitation durations, fl oat

hour s
code20 Precipitation type short
code2l Degrees F/ Current air tenperature fl oat
code22 Degrees F / Daily maxi mumair tenperature fl oat
code23 Degrees F/ Daily minimumair tenperature fl oat
code24 Degrees F / Average weekly nmaxi mum air fl oat
tenperature
code25 Degrees F / Average weekly mininmmair fl oat
tenperature
code26 Degrees F / Vater tenperature fl oat
code27 Degrees F / Daily nmaxi mum soil tenperature fl oat
code28 Degrees F / Daily mninmmsoil tenperature f| oat
code29 Degrees F/ Wet bulb tenperature fl oat
code30 Number of hours tenperature is bel ow 25 f| oat
degrees F
code3l Nunmber of hours tenperature is bel ow 32 fl oat
degrees F
code32 degrees F / Dew point tenperature fl oat
code33 Feet / R ver stage at specified ob time f1 oat
code34 Feet / River stage at previous 1 a.m fl oat
code35 Feet / River state at previous 7 p.m fl oat
code36 Feet / River stage at previous 1 p.m fl oat
code37 Feet / River stage at previous 7 a.m fl oat
code38 Feet / River stage at 7 a.m 2 days ago fl oat
code39 Ri ver stage at observed crest tinme char of max
length 8
code40 Feet / River stage at observed crest fl oat
code4l Ri ver stage trend short
code43 kcfs (1000's cubic feet / sec) / R ver fl oat

di schar ge instantaneous neasured

-53

Table 4.1-1,

cont.

LDAD MANUAL NETCDF VARl ABLES

NAME UNI TS / DESCRI PTI ON DATA TYPE
code44 kcfs / River discharge nmean daily measured fl oat
code45 kcfs / River discharge instantaneous fl oat
conput ed

code46 kcfs / River discharge nmean daily conputed fl oat

code4? kcfs / River discharge instantaneous from fl oat
rating

code48 kcfs / River discharge nmean daily from fl oat
rating

code49 kcfs / River discharge peak fl oat

code50 kcfs / River discharge canal diversion fl oat

codeb52 Feet / Reservoir pool elevation at fl oat
specified ob tine

codeb53 Feet / Reservoir pool elevation at fl oat
previ ous 0600 UTC

code54 Feet / Reservoir pool forecast, Day 1 fl oat

codeb5 Feet / Reservoir pool forecast, Day 2 f| oat

codeb56 Feet / Reservoir pool forecast, Day 3 fl oat

code57 Feet / Reservoir tailwater elevation fl oat

codeb58 kcfs / Reservoir inflow instantaneous fl oat

codeb9 kcfs / Reservoir inflow, nean daily fl oat

code60 kcfs / Reservoir outflow instantaneous fl oat

code61 kcfs / Reservoir outflow, nean daily fl oat

code62 kcfs / Reservoir outflow forecast, nean fl oat
daily, Day 1

code63 kcfs / Reservoir outflow forecast, nean fl oat
daily, Day 2

code64 kcfs / Reservoir outflow forecast, nean fl oat
daily, Day 3

code65 kaf / Reservoir storage at specified ob fl oat
tine

code66 Inches / Reservoir evaporation, 24 hour fl oat
total, computed

code67 Percent / Snow cover, areal extent fl oat

-54

Table 4.1-1,

cont.

LDAD MANUAL NETCDF VARl ABLES

NAME UNI TS / DESCRI PTI ON DATA TYPE
code68 I nches / Snow depth, total on ground fl oat
code69 I nches / Snow depth, new snow fl oat
code70 I nches/inches Snow density f1 oat
code71 Inches / Snow, water equivalent, total of fl oat

snow and i ce on ground
code72 Snow r eport char of max

length 5

code73 Percent / lce cover, areal extent f1 oat
code74 Mles / Ice extent fromreporting area, up fl oat

to downstream
code75 Mles / Ice open water, extent from fl oat

reporting area, up or downstream
code76 Inches / I|ce thickness f1 oat
code77 I ce report char of max

length 5

code78 Inches / Depth of frost f| oat
code79 I nches / Depth of frost thawed fl oat
code80 Frost structure report short
code81 Surface frost intensity short
code82 State of ground short
code83 I nches / Soil noisture f1 oat
code84 Present weat her short
code85 Past 6 hour weat her short
code86 Percent / Relative Humdity fl oat
code87 I nches / Evaporation, neasured, Cass A fl oat

pan or ot her
code88 M1 es per hour / Wnd speed fl oat
code89 Tens of degrees / Wnd direction fl oat
code90 Sunshi ne, hours per day fl oat
code9l | angl eys / Sol ar energy, accumul ated f| oat

i ncom ng
code92 Dew i ntensity fl oat

-55

Table 4.1-1, cont.

LDAD MANUAL NETCDF VARI ABLES
NAME UNI TS / DESCRI PTI ON DATA TYPE
code93 Hours / Leaf wetness f1 oat
code94 Degrees F / Water pan tenperature maxi mum fl oat
code95 Degrees F / Water pan tenperature m ni mum fl oat
code96 Mles / 24 hour wind flow f1 oat
rawMessage RCSA raw nessage char of max
| ength 256

4,2.3.6.3 Supporting files

The file $FXA DATA/ LDAD dat a/ LDAD nfo.txt deternines which of the three types
of files (hydro, nmesonet, or nmnual) the decoded data froma given report type
are witten to. Additional LDAD configuration files may be found in under
this directory. They are described in the LDAD docunentation referenced in
Section 7.0.

4,2.3.7 Model Soundi ngs

Direct forecast nodel soundings fromthe eta nodel are schedul ed to becone
available in AWPS in the Build 5.0 tine frame. Data will be fornatted and
transmtted from NCEP as BUFR-encoded nessages. The data ingest, decoding,
and storage of these data will be described here once the capabilities have
been desi gned and i npl enented on AW PS.

4,2.3.7.1 File nam ng conventions

Reser ved.

4,2.3.7.2 Oganization of files

Reser ved.

4,2.3.7.3 Supporting files

Reser ved.

4,2.3.8 Reading and witing to point data files

Al local applications that use point data shall use the net COF versions of
the point data files, since the netCDF APl is standard and supported.
Plotfile versions of the files shall not be accessed where a netCDF option is
available. Plotfiles are currently (Build 4.3 and earlier) used by the AWPS

D2D di splay applications, but are slated to be replaced by net COF fil e usage
for this purpose in Build 5, at which tine the plotfiles will be elimnated.

-56

Table 4.1-1, cont.

As mentioned in Section 2.3.2, the access to AWPS data files shall have been
set to read-only for |ocal application devel opnent. Therefore, |ocal
applications shall not be able to wite to the AWPS point data files or
create files in the AWPS data directories. If witing to an AWPS point data
fileis required, it is suggested that a |local copy of the file be created
under the ownership of the devel opnent account, and that all witing be done
to the local copy.

Refer to Section 4.1.1.1 for an introduction to netCDF data files and data
types. The netCDF APIs to read fromand wite to netCDF data files are
docunented in the Net CDF User's Quide. See Appendix 1 for exanples of the use
of selected netCDF APls, and for an exanple of the use of a utility, gennet.f,
which will generate FORTRAN 77 source code to read any existing net COF data
file.

-57

Table 4.1-1, cont.
4.2.4 RADAR Products (Current to Build 4.3)

RPG created base and derived products and text and status nessages are
received and stored fromone or nore WSR-88Ds accessible to a WFO or RFC. The
full -resolution base data fromwhich the RPG creates the PUP display products
are not currently available to AWPS. The radar products are stored
individually in flat files under a directory tree. Individual radar data
files are given nanes matching their Volume Scan Tinme and Date. The
subdirectories in the tree generally correspond to the product attributes that
the user nust select to narrow the list of all radar products down to a |ist
of tines (files) for a given product froma given radar. Text nessages,

al phanuneric tables, and site adaptation paraneters extracted from RPG
products are al so stored in hunan-readable formin the AWPS text database.

4.2.4.1 Nam ng conventions for radar product directories and files

The top level directory under which all radar products are stored is

$FXA DATA/radar. Under $FXA DATA/radar, the directory tree for nost products
| ooks li ke one of two types, depending on whether the product is a (1) radia
or raster inmmge; or (2) a graphic, graphic overlay, or a text nessage

For images, the directory tree is of the form

~/ r adar Name/ pr oduct Type/ el evati on/ resol uti on/ | evel s/

For a graphic, graphic overlay, or text message, the directory tree is of the
form

~/ r adar Nane/ pr oduct Type/
Individual files are naned by their Volume Scan Tinme as either
yyyymdd_hhmm (for base and derived products)

or
yyyymdd_hhmss (for messages not related to a specific volunme scan).

For exanple, the 0.54 NM (1 kn), 0.5° elevation, 16-1evel Reflectivity image
for 17 February 1997 at 1726 UTC fromthe Twi n Lakes, Cklahoma, radar (KTLX)
woul d be found in the file:

$FXA DATA/ radar/ ktl x/ Z/ el evO_5/resl/ | evel 16/ 19970217_1726
where Z is the shorthand nane used for Base Reflectivity. The radarName
portion of the directory structure is always the | ower-case conversion of the

radar site call letters (ktlx for KTLX)

A Storm Tracking Information for the sane Vol une Scan would be found in the
file:

$FXA DATA/ radar/ kt | x/ STI /19970217 _1726

where the elevation, resolution, and | evels subdirectories are omtted for
this type of product.

-58

Table 4.1-1, cont.

A Ceneral Status Message received fromthe RPG around the time of this Vol une
Scan woul d be found in:

$FXA_DATA/ radar/ kt | x/ GSM 19970217_172637
where 17:26:37 was the UTC receipt tine of the GSM to the second.

The product Type, el evation, resolution, and | evels subdirectory nanes used in
the tree are defined in the tables below. The |last colum of the product Type
table indicates which, if any, of the elevation, resolution, and |evels
subdirectories apply to the pathnanme to the product. Note that for all inmage
products, where one of these attributes does not apply to an inmage product a
dummy subdirectory name (e.g., level0) is used in order to keep the nunber of
subdirectories the sane. Appendix 3 contains the summary of all applicable
radar data subdirectories bel ow /radarNane, by product type. As always in
UNI X, all the directory and file nanes are case sensitive.

Table 4.2.4.1-1. Subdirectory nane definitions for the radar product data
attri bute product Type. The ELEV/I RES/LEVEL col umm i ndi cates the nunber, if
any, of additional subdirectories which are part of the pathnane to the
files for the product type. An E neans elevation applies, an R neans
resolution applies, an L neans | evels applies, and none neans there are no
subdirectori es beyond product Type.

DI RECTORY NEXRAD DESCRI PTI ON | ELEV
NAVE ACRONYM | RES
/ LEVELS
AAP -- Al ert Adaptation Paraneter Message none
AM -- Al ert Message none
APR APR AP-renoved Conposite Reflectivity E/R'L
CFC -- Cutter Filter Control E/RL
™M ™M Conbi ned Monent E/R L
Cs Cs Conbi ned Shear none
Csc Csc Conbi ned Shear Cont our none
Csct -- Conbi ned Shear Contour Annotations none
CST -- Conbi ned Shear Annotations none
(074 CR Conposite Reflectivity E,RL
czC CRC Conposite Reflectivity Contour E R
DHS DHR Digital Hybrid Scan Reflectivity E/RL
DPA DPA Digital Precipitation Array E/RL
DSTP DSP Digital Storm Total Precipitation E/RL

-59

Table 4.1-1, cont.
DI RECTORY NEXRAD DESCRI PTI ON | ELEV
NAVE ACRONYM | RES
/ LEVELS
ET ET Echo Tops E/R'L
ETC ETC Echo Tops Cont our none
FTM FTM Free Text Message none
GSM GSM General Status Message none
HDP DPA Hourly Digital Precipitation Array ERL
HI HI Hai | | ndex none
HT -- Hai | I ndex Annotation Table none
HSR HSR Digital Hybrid Scan Reflectivity E,RL
LRA LRA Layer Conposite Reflectivity (Average) ERL
LRM LRM Layer Conposite Reflectivity (Maxi mum E,R L
M M Mesocycl one none
M -- Mesocycl one Annotation Tabl e none
oHP OHP One Hour Precipitation Accumul ation ERL
OHPT -- One Hour Precipitation Accumul ation none
Annot at i on
PRR -- Product Request Response none
PTL -- Products Available List (Message code 8) none
RCM RCM Radar Coded Message none
RCS RCS Refl ectivity Cross Section (16 LEVEL) E/RL
SCs SCS Spectral Wdth Cross Section E/RL
SPD SPD Suppl enental Precipitation Data ERL
(Note 1)
SRM SRM Storm Rel ative Mean Radial Vel ocity (Map) ERL
SRR SRR Storm Rel ative Mean Radial Velocity (SWA E/R L
Regi on)
SS SS Storm Structure none
STI STI Storm Tracki ng | nfornation none
STIT -- St orm Tracki ng I nformati on Annot ation none
STP STP Storm Total Precipitation ERL

-60

Table 4.1-1, cont.
DI RECTORY NEXRAD DESCRI PTI ON | ELEV
NAVE ACRONYM | RES
/ LEVELS
STPT -- Storm Total Precipitation Annotation none
SwW sSw Base Spectrum Wdth E,RL
SWP SWp Severe Weat her Probability none
SWR SWR SWA Reflectivity E/RL
SW6 SW6 SWA Shear E/R L
SW/ SW/ SWA Base Vel ocity E/RL
SWv SWvV SWA Base Spectrum W dth E/RL
THP THP Three Hour Precipitation Accunul ation E,RL
THPT -- Three Hour Precipitation Accumul ation none
Annot ati on
TVS TVS Tornado Vortex Signature none
TVST -- Tornado Vortex Signature Annotations none
UAM UAM User Alert Message none
USRA USP User Sel ectable Precipitation Accurul ation E/RL
\Y \ Base Vel ocity E,RL
VAD VAD Vel oci ty- Azi nut h Di spl ay none
VADT -- Vel oci ty-Azi muth D splay Annotation none
VCS VCS Vel ocity Cross Section E/RL
Vi L VI L Vertically-Integrated Liquid ERL
VWP WP VAD Wnd Profile none
VER VR Weak Echo Region E/RL
XSR RCS Reflectivity Cross Section (8 LEVEL) E/RL
XSV VCS Vel ocity Cross Section (8 LEVEL) E/R L
Z R Base Reflectivity ERL
tstorm n/ a Various SCAN t hunderstormthreat and QPF n/ a
data and configuration files. Not RPG
products.
Note 1. Uses the res40 value for resolution attribute for the 1/4 LFM

resolution grid.

No | onger applies in NEXRAD Build 9 version of product,

whi ch is al phanuneric only.

-61

Table 4.1-1,

Table 4.2.4.1-2.

cont.

attribute el evation.

Subdirectory nane definitions for the radar product data

DI RECTCRY NEXRAD DESCRI PTI ON
NAVE NAVE
| ayer0O -- A dummy subdirectory name used when no | ayer or
el evation applies to i mage product, but there are
resolution and data | evels subdirectories to follow
| ayerl LOWALT Low Layer
| ayer 2 MD ALT M ddl e Layer
| ayer3 H GH ALT H gh Layer
elev0_5 0.5 deg 0.5° elevation
elevl 5 1.5 deg 1.5° elevation
elev2_4 2.4 deg 2.4° elevation
elev2 5 2.5 deg 2.5° elevation
elev3d 4 3.4 deg 3.4° elevation
elev3 5 3.5 deg 3.5° elevation
el evd_3 4.3 deg 4.3° elevation
elevd 5 4.5 deg 4.5° elevation
el ev5_3 5.3 deg 5.3° elevation
eleve_0 6.0 deg 6. 0° elevation
el evb_2 6.2 deg 6. 2° elevation
elev7_5 7.5 deg 7.5° elevation
el ev8_7 8.7 deg 8.7° elevation
elev9 9 9.9 deg 9.9° elevation
el evl0_0 10. 0 deg 10. 0° el evation
elevl2 0 12. 0 deg 12.0° el evation
elevld 0 14. 0 deg 14.0° el evation
elevld_6 14.6 deg 14.6° el evation
el evl6 7 16. 7 deg 16.7° el evation
el evl9 5 19.5 deg 19.5° el evation

-62

Table 4.1-1, cont.

Table 4.2.4.1-3. Subdirectory nane definitions for the radar product data
attribute resol ution.

DI RECTORY NEXRAD DESCRI PTI ON
NAVE NAVE

res0_25 .13 NM 0.13 NMresolution (0.25 km

res0_5 .27 NM 0.27 NMresolution (0.5 km

resl .54 NM 0.54 NMresolution (1 km

res2 1.1 NM 1.1 NMresolution (2 km

res4 2.2 N\M 2.2 NMresolution (4km also 1/40 LFM for HDP)

res40 -- 1/4 LFMgrid for (obsol ete) suppl enental
precipitation data array (e.g.,
~/ SPDY | ayer O/ res40/ | evel 8/)

resoO -- Dummy resol uti on nane, used for the range vs.
azimut h (B-scan) Comnbi ned Moment i nage/ graphic
pr oduct

Table 4.2.4.1-4. Subdirectory nane definitions for the radar product data
attribute |evels.

DI RECTORY NEXRAD DESCRI PTI ON
NAME NAME
| evel 16 16 LEVEL 16-col or-1 evel displayabl e i nage data
| evel 8 8 LEVEL 8-col or-1evel displayable image data
| evel 256 -- 256-1 evel non-displayable (on PUP) digital arrays.
For digital precipitation arrays, linear for DSTP

(DSP) product, scal ed dBA for HDP (DPA) product,
where dBA = 10l og[accunmul ation/ (1 mm]. Al so used
for DHS [Digital Hybrid Scan Reflectivity] (DHR).
See NEXRAD Product Specification |ICD 1208378G for
I evel and increment definitions.

4.2.4.2 Radar text products

Al phanureri c WBR-88D radar products, and text fields extracted from graphi cal
radar products with tabular or other al phanuneric data (e.g., the Hail Index
table, site adaptati on paraneters), are stored in the text database (see
Section 4.2.7) under the AFCS Node (CCC portion of the CCCNNNXXX Product
Identification Label [PIL]) identifier “WBR'. Radar text products can be
viewed fromthe AWPS Text Wrkstation, or can be retrieved fromthe dat abase
using the textdb utility.

-63

Table 4.2.4.1-2, cont.

The type of text product is indicated by the NNN category identifier, and the
radar site that the product data pertain to is given by the XXX | ocation
identifier. The XXX value is determ ned by dropping the |eading character
(“K" for CONUS) and taking the trailing three characters of the WSR- 88D
station ID. For exanple, for the Amarillo, Texas WSR-88D station |ID (KAMR),
the XXX value is “AVA", and its Free Text Messages woul d be stored in AWPS
under the PIL “WSRFTMAMA". The NNN radar text product categories and type(s)
of data stored for each product type are defined in Table 4.2.4.2-1.

Table 4.2.4.2-1. Product category (NNN) identifiers for radar text products
stored in the AWPS text database.

XXX ldentifier Text Product Description

Csc Conbi ned Shear Adaptabl e Paraneters (from Contour product)

CSH Conbi ned Shear Adaptabl e Paraneters (from | nmage product)

FTM Free Text Message

HAl Hai | Index Cell Table(s) and/or Adaptation Paraneters

MES Mesocycl one Cell Tabl e(s) and/or Adaptation Paraneters

P One- Hour Precipitation Accumul ation Parameters

PTL RPG “Products Avail abl e” Table (One-Tine or dial-out only)

RCM Radar Coded Message

SPT Storm Total Precipitation Accurul ation Paraneters

STI Storm Cel | Tracki ng/ Forecast Tabl e(s) and/or Adaptation
Par anet er s

STP ROVR2

THP Three-Hour Precipitation Accunul ati on Parameters

TVS Tornadi ¢ Vortex Signature (TVS) Cell Table and/or TVS
Adapt ati on Paraneters

UAM User Alert Message

WP VAD Wnd Profile Adaptable Paraneters

4.2.4.3 Radar product data format

WBR- 88D radar product messages fromthe RPG are stored in as-received format,
whi ch corresponds to the NEXRAD Archive Level |V storage fornat, and al so the
RPG t 0- Associ at ed- PUP nessage format. A mininal anmount of decoding is
perforned on the products as they are received in order to extract the
attributes needed to identify the contents of the product message, tinme-stanp
the product data via its file name, and create and store the radar product
file in the correct directory. A full description of the format of WSR-88D
radar products is beyond the scope of this docunent. It is strongly

-64

Table 4.2.4.1-2, cont.

recommended that if there is a need to use radar data in a local application
that the devel oper contact a know edgeabl e person in an organi zation (e.g.

FSL, TDL, or the OSF) that has done applicati ons devel opnent involving the use
of these data.

4.2.4.4 AWPS APIs for radar product processing

APl's for radar product processing fall into two categories: data access APls
and data processing APls. Each of these APl categories is described in the
foll owi ng subsections

4.2.4.4.1 Radar Data Access

Al current radar data inventory and access in AWPS is through interactive

di splay routines and processes in D2D. The APlIs used for radar data access in
the D2D interactive display environment do not readily apply to applications
in a stand-al one environnent, so a description of these APIs is deferred unti
suitable local application radar APls are available. Until then, sufficient
information has been provided in Section 4.2.4.1 to allow a |local application
devel oper to develop code to |l ocate and access any specific radar product file
based on its product attributes.

4.2.4.4.2 Radar Data Processing APls

APls are available to extract application-ready information fromthe various
bl ocks of data that conprise the RPG products. Unlike the radar data access
routi nes, the decoding routines are | ess enbedded in the D2D environnent, and
may be practicably nodified for stand-al one applications' use. These routines
are originally C, mnimally rewitten in C++. |f needed, the original C
functions should be available fromFSL. Stand-alone APIs are planned to be
avail able for use at sonme time in the future.

It is definitely preferable to use an existing set of APIs for decodi ng and
processing RPG products rather than trying to wite a new set of APIs. There
are many mstakes and mssing details in the NEXRAD docunentati on that have
been overcone by FSL and other organi zations through trial-and-error, and it
is worthwhile to nmake use of this experience whenever possible

The C++ routine decodeRadar in ~/src/dnRadar/ calls all of the functions that
extract the product paraneters and the inmage or graphic data froma single
product data file. The decodeRadar routine contains three functions for the
three basic data types: decodeRadial, decodeRaster, and decodeG aphic. Only
one of these three functions is used to decode a product of a given type. The
proper decode function is determ ned by the argunents provided in the call to
decodeRadar .

The decode functions take as argunents the pathnane to the radar product file
and a pointer to the object type that contains the decoded data. The
decodeRadi al function takes two additional input argunents, resolution and
ring. The resolution paraneter refers to the gate spacing along the radial
and is used to determ ne how nany gates are expected along a single radial
which is used to size the unpacked RLE i nage data array. The ring paraneter
controls whether a bounding ring is engraved into the inmage data at the
maxi mum range of the product.

-65

Table 4.2.4.1-2, cont.

The three decode functions each call a set of common functions for decoding
product bl ocks that are contained in all WSR-88D products. The routine
getWrHdrinfo reads the variables in the Message Header Bl ock, including the
NEXRAD Product Code, the source radar |ID nunber, and the tinme of nessage
creation. The routine get\WrPdblnfo reads the Product Description Block and
provides the |atitude, |ongitude, and hei ght of the radar; the operationa
node and Vol une Coverage Pattern; the Volunme Scan Tine and Nunber, and product
generation tine; the elevation angle and index; and the center azinmith and
range (for SWA and Cross Sections). The routine getWrPsblnfo reads the
Product Synbol ogy Block ("the data"), and calls different routines dependi ng
on the data type

Data | evel s and product |legend information are read for radial and raster

i mage products. G aphic product |ayers are separated fromthe product for
graphic products. |Inmge data arrays for radial and raster inmage products are
recei ved packed via a run-length-encodi ng (RLE) algorithm and nust be
unpacked before use. The APIs extractRaster and extractRadial are called to
unpack the RLE data into full arrays that can be processed into displays or
used in other algorithns.

- 66

Table 4.2.4.1-2, cont.
4.2.5 Satellite |Imagery
4.2.5.1 Naming Conventions for Image Directories and Files

In WFO Advanced, satellite inages are stored in netCDF files once they have
been decoded by the satellite decoder. Thus, all image Input/Qutput is done
with netCDF APIs. Each file contains one inage.

Al netCDF inmage files are stored in a directory pathname consisting of two
parts. The first (leading) part consists of six fields filled in according to
image scale and band. Here is a tenplate for the leading six fields of the
pat h:

$FXA _DATA/ sat / <sour ce>/ net CDF/ <scal e>/ <pr oj ect i on>_<band>
wher e:

$FXA DATA is an environnment variable specifying the root of the data
directory tree. This variable's current value is "/data/fxa".

<source> is either SBN or FSL (subdirectory FSL is currently not used);

<scal e> may be any of: al aska, conusC, east CONUS, hawaii, grid201, nhSat,
puertoRi co, superNat9, or west CONUS;

<projection> nmay be any of: akBig (for scale al aska), alaska (for scale
al aska), conus (for scal es conusC, east CONUS, and west CONUS), four Sat
(for scale grid201), nhem (for scale nhSat), prBig (for scale puerto
Ri co), puertoRi co (for scale puertoRico), or super (for scale superNat9);
and

<band> nay be any of: i1l (for 11.0 micron infra-red inmages), i12 (for 12.0
mcron infra-red images), i39 (for 3.9 mcron infra-red i nages), iw (for
6.7 mcron water vapor channel infra-red inages), or vis (for visible
light inages).

The second part of the path is not always present. Wen present, it consists
of a subdirectory /clean/, /regdip/ (for regional clip), or /remap/. An
under st andi ng of these subdirectories is best obtained by a quick overvi ew of
sone of the satellite directory tree, which foll ows:

The following directories contain raw NESDI S sectors for the northern
hem sphere:

$FXA_DATA/ sat / SBN net CDF/ nhSat / nhem i 11
$FXA_DATA/ sat / SBN net CDF/ nhSat / nhem i 12
$FXA_DATA/ sat / SBN net CDF/ nhSat / nhem i w
$FXA_DATA/ sat / SBN net CDF/ nhSat/ nhem vi s
$FXA_DATA/ sat / SBN net CDF/ nhSat / nhem i 39

-67

Table 4.2.4.1-2, cont.
The following directories contain links to sat/SBN net COF/ nhSat/ nhent:

$FXA_DATA/ sat / SBN net CDF/ nhSat / nhem i 11/ cl ean
$FXA_DATA/ sat / SBN net CDF/ nhSat / nhem i 12/ cl ean
$FXA_DATA/ sat / SBN net CDF/ nhSat / nhem i w/ cl ean
$FXA DATA/ sat / SBN net CDF/ nhSat / nhem vi s/ cl ean
$FXA_DATA sat / SBN net CDF/ nhSat / nhem i 39/ cl ean

The following directories contain raw North American NESDI S sectors
(superNat):

$FXA_DATA/ sat / SBN net CDF/ super Nat 9/ super _i 11
$FXA_DATA/ sat / SBN net CDF/ super Nat 9/ super _i 12
$FXA_DATA/ sat / SBN net CDF/ super Nat 9/ super _i w
$FXA DATA/ sat / SBN net CDF/ super Nat 9/ super _vi s
$FXA_DATA/ sat / SBN net CDF/ super Nat 9/ super _i 39

The following directories contain links to sat/SBN net COF/ super Nat 9/ super *:

$FXA DATA/ sat / SBN net CDF/ super Nat 9/ super _i 11/ cl ean
$FXA DATA/ sat / SBN net CDF/ super Nat 9/ super _i 12/ cl ean
$FXA DATA/ sat / SBN net CDF/ super Nat 9/ super _i w/ cl ean
$FXA DATA/ sat / SBN net CDF/ super Nat 9/ super _vi s/ cl ean
$FXA DATA/ sat / SBN net CDF/ super Nat 9/ super _i 39/ cl ean

The following directories contain CONUS i nages, which are renmapped from both
the North Anerican and high resol ution east/west CONUS sectors:

$FXA _DATA/ sat / SBN net CDF/ conusC/ conus_i 11/ renap
$FXA _DATA/ sat / SBN net CDF/ conusC/ conus_i 12/ r enap
$FXA _DATA/ sat / SBN net CDF/ conusC/ conus_i w/ r enap
$FXA _DATA/ sat / SBN net CDF/ conusC/ conus_vi s/ renap
$FXA _DATA/ sat / SBN net CDF/ conusC/ conus_i 39/ renap

The following directories contain |inks to sat/SBN net COF/ conusC/ conus*/r enap:

$FXA_DATA/ sat / SBN net CDF/ conusC/ conus_i 11
$FXA_DATA/ sat / SBN net CDF/ conusC/ conus_i 12
$FXA_DATA/ sat / SBN net CDF/ conusC/ conus_i w
$FXA DATA/ sat / SBN net CDF/ conusC/ conus_vi s
$FXA_DATA/ sat / SBN net CDF/ conusC/ conus_i 39

The following directories contain high resolution east CONUS sectors. Only
one version of these are kept because they are used only for clipping and
r emappi ng:

$FXA_DATA/ sat / SBN net CDF/ east CONUS/ conus_i 11
$FXA_DATA/ sat / SBN net CDF/ east CONUS/ conus_i 12
$FXA_DATA/ sat / SBN net CDF/ east CONUS/ conus_i w
$FXA_DATA/ sat / SBN net CDF/ east CONUS/ conus_vi s
$FXA_DATA/ sat / SBN net CDF/ east CONUS/ conus_i 39

-68

Table 4.2.4.1-2, cont.

The following directories contain high resolution west CONUS sectors. Only
one version of these are kept because they are used only for clipping and
r emappi ng:

$FXA_DATA/ sat / SBN net CDF/ west CONUS/ conus_i 11
$FXA_DATA/ sat / SBN net CDF/ west CONUS/ conus_i 12
$FXA_DATA/ sat / SBN net CDF/ west CONUS/ conus_i w
$FXA_DATA/ sat / SBN net CDF/ west CONUS/ conus_vi s
$FXA_DATA/ sat / SBN net CDF/ west CONUS/ conus_i 39

The following directories contain high resolution east CONUS data clipped to
the regional scale:

$FXA DATA/ sat / SBN net CDF/ east CONUS/ conus_i 11/regd i p
$FXA DATA/ sat / SBN net CDF/ east CONUS/ conus_i 12/regd i p
$FXA DATA/ sat / SBN net CDF/ east CONUS/ conus_i w/regd i p
$FXA DATA/ sat / SBN net CDF/ east CONUS/ conus_vi s/regdip
$FXA DATA/ sat / SBN net CDF/ east CONUS/ conus_i 39/regd i p

The following directories contain high resolution west CONUS data clipped to
the regional scale:

$FXA DATA/ sat / SBN net CDF/ west CONUS/ conus_i 11/regd i p
$FXA DATA/ sat / SBN net CDF/ west CONUS/ conus_i 12/ regd i p
$FXA DATA/ sat / SBN net CDF/ west CONUS/ conus_i w/regd i p

$FXA DATA/ sat / SBN net CDF/ west CONUS/ conus_vi s/regd i p
$FXA DATA/ sat / SBN net CDF/ west CONUS/ conus_i 39/regd i p

Following the path is the file nanme. The file names are based on inage date
and tine. The format for WO Advanced net CDF i mage file nanes is:

yyyymdd_HHW
wher e:
yyyy is the 4-digit year;
mmis the 2-digit nonth;
dd is the 2-digit day-of-nonth;
HHis the 2-digit hour; and
MMis the 2-digit mnute.
The following two exanples illustrate how these pi eces are put together:

/ dat a/ f xa/ sat / SBN net CDF/ east CONUS/ conus_vi s/ regd i p/ 19970425 _1815

contains the eastern CONUS visible inage clipped to the regional scale for
1815Z on April 25, 1997, and

/ dat a/ f xa/ sat / SBN net CDF/ nhSat / nhem_ i w/ 20000229 _1532

hol ds the northern hem sphere 6.7 mcron water vapor channel image for 1532Z
on February 29, 2000.

4.2.5.2 Oganization of netCDF Inage Files

-69

Table 4.2.4.1-2, cont.

The | ayout of netCDF inmage files in WFO Advanced is sinple and
straightforward. There are nineteen global attributes. There are no

coordi nate vari abl es (dinensions that are also variables with values stored in
thenm). There are two dinmensions and (including the image itself) three
vari abl es.

4,2.5.2.1 dobal Attributes

The net CDF inmage files of WO Advanced have ni neteen global attributes, al
currently used for internal file docunmentation only. They are

1) “channel ” = a 23-character string identifying the wavel ength of the
satellite sensor used to nmake the original inage
2) “depi ctorNane” = an 80-character string consisting of a unique

identifier for the map projection / areal coverage conbination for the
image in this file.

3) “projlndex” = a long int which identifies the projection of the inmage
stored in this file.

4) “proj Nanme” = an 80-character string giving the name of the map
projection of the inmage stored in this file.

5) “centralLat” = a float value giving the latitude (in degrees north) at
which the inage’s nap projection is tangent to the earth

6) “central Lon” = a float value giving the longitude (in degrees east) at
which north is “up on the image’'s nap projection

7) “rotation” = a float value giving the angle (in degrees clockw se) the
y-axis of the inage’s map projection is rotated fromnorth

8) “xMn” = a float value giving an arbitrary cartesian coordinate for the
image’'s map projection. This is for FSL's use in D 2D.

9) “xMax” = a float value giving an arbitrary cartesian coordinate for the
image’'s map projection. This is for FSL's use in D 2D.

10) “yMn” = a float value giving an arbitrary cartesian coordinate for the
image’'s map projection. This is for FSL's use in D 2D.

11) “yMax” = a float value giving an arbitrary cartesian coordinate for the
image’'s map projection. This is for FSL's use in D 2D.

12) “lat00" = a float value giving the latitude (in degrees north) of the
lower left (southwest) corner of the inmage.

13) “lon00" = a float value giving the longitude (in degrees east) of the
lower left (southwest) corner of the inmage.

14) “lat \xNy" = a float value giving the latitude (in degrees north) of the
upper right (northeast) corner of the inage.

15) “l onNxNy" = a float value giving the |longitude (in degrees east) of the
upper right (northeast) corner of the inage.

16) “dxKnf = a float value giving the left-to-right (west-to-east) size in

kil oneters of one pixel at the latitude and | ongitude given by gl oba
attributes “l at DxDy” and “l onDxDy” defined bel ow.

17) “dykKnf = a float value giving the bottomto-top (south-to-north) size in
kil oneters of one pixel at the latitude and | ongitude given by gl oba
attributes “l at DxDy” and “l onDxDy” defined bel ow.

18) “latDxDy” = a float value giving the latitude (in degrees north) at
whi ch the “dxKnf and “dyKni (defined above) val ues are valid.
19) “l onDxDy” = a float value giving the longitude (in degrees east) at

whi ch the “dxKnf and “dyKni (defined above) val ues are valid.
4,.2.5.2.2 D nensions and Coordi nate Vari abl es

-70

Table 4.2.4.1-2, cont.

The net COF i nmage files of WO Advanced have no coordinate variabl es and no
unlimted (or record) dinensions.

Two di mensi ons are avail able in WFO Advanced net CDF i mage files for
di mensi oni ng (sizing) variables. They are:

1) "y" = the nunber of pixels along the left and right (bottomto-top or
sout h-to-north) edges of the inage.

2) "x" = the nunber of pixels along the bottomand top (the right-to-Ieft
or west-to-east edges) of the inage.

4,2.5.2.3 Variables, with their D nensions and Attri butes.

Build 4.3 netCDF inage files have only three variables. Here they are, with
their di mensions and attributes:

1) "image" = a two-dimensional array of pixels. This is the satellite
image itself. Values of this variable are of type NC BYTE (byte).

Before using a pixel value from"imge", the progranmrer shoul d check

that it is neither O nor 255. FSL has tried to nake O the val ue used to
represent "not defined" because it nakes for nuch nore visually pleasing
i mages when there have been | arge areas m ssing, as opposed to the val ue

of 255 which was being used in the NESDIS files. FSL has tried to set
it up so that a large consecutive area of 255s woul d get converted to

Os, but that a single 255 would not, in case it was real data. This has

only been partially successful in cases where mssing data is present
the mddle of inages, and it is possible that in the future FSL will
just convert all 255s to Os.

The variable "image" has two dinensions ("y" and "x") and no attributes.

2) "validTinme" = the tinme of the image in whole seconds since 00Z on
January 01, 1970. The value of this variable is of type NC DOUBLE
(double). This variable has no dinensions and two attributes. The
first attribute is a 39-character string called "units", and has the
val ue "seconds since 1970-1-1 00: 00: 00. 00 0: 00". The second attribute
is a 10-character string called "long_nanme", and has the value "Valid
Ti me".

3) "val i d100t hSecs" = hundredths of a second after "validTine" that the
satellite began the scan that produced the image in this file. The
value of this variable is of type NC BYTE (byte). This variable has no
di mensions and two attributes. The first attribute is a 12-character
string called "units", and has the value "centiseconds". The second

attribute is a 10-character string called "long_nane", and has the val ue

"Valid 100th of a second".

4.2.5.3 Qher Supporting Files
None for build 4.3.

4.2.5.4 Software APls for net COF image file 1/0

-71

Table 4.2.4.1-2, cont.

No APls for reading fromor witing to WFO Advanced net CDF i nage files will be
provided in build 4.3. To read in an i nage, programthe follow ng steps
(described for C |anguage programmi ng):

1)

2)

3)

4)

5)

6)

7

7

construct the full path (directory + file nane) for the netCDF file
contai ning the desired inage.

call "nc_open" to open the netCDF file. For the calling argurent
"filenane", pass in the path constructed in the preceding step

call "nc_ing_varid" to get the netCDF variable id for the image. For
the calling argunment "ncid", use the netCDF file id returned by the
"nc_open" call in step 2 above. For the calling argunent "name", pass

in a string containing "inage"

call “nc_ing_vardimd’ to get the netCDF dinension id s for the inmage
variable’s two dinmensions. For the calling argunent "ncid", use the
netCDF file id returned by the "nc_open" call in step 2 above. For the

calling argurment “varid’, pass in the netCDF variable id returned by the
"nc_ing_varid" call in step 3 above.

for each netCDF dinension id returned by the “nc_ing_vardimd” call in
step 4 above (there should be two), call “nc_ing_dimMen” to get the

di rensions of the image. For the calling argunent "ncid", use the
netCDF file id returned by the "nc_open" call in step 2 above. For the
calling argurment “dimd”, use one of the netCDF dinension id s returned
by the “nc_ing_vardimd” call in step 4 above

using the dinmensions returned by the two "nc_ing_dimen" calls in the
previous step, allocate (nalloc) nenory space for the inage (an array of
byt es) .

call "nc_get_vara_uchar" to get the inmage. The calling argunents are as

fol |l ows:

"ncid" - use the netCDF file id returned by the "nc_open"” call in step 2
above

"varid" - use the variable id returned by the "nc_ing_varid" call in
step 3 above.

"start" - use an array consisting of two |longs, both set equal to zero

"count" - use an array consisting of two longs. Fill the array with the
two di mensions returned by the two “nc_ing_dimen” calls in step 5
above

"up" - pass in the address of the inage (the byte array) you all ocated
in step 6 above. "nc_get_vara_ uchar" will read the inage into this

array and return it to you

call "nc_close" to close the netCDF file. For the calling argunent
"ncid", use the netCDF file id returned by the "nc_open"” call in step 2
above

-72

Table 4.2.4.1-2, cont.
As a part of build 3.0, TDL supplied the “get_i mage_nav’ APl to provide
prograns access to i nage navigation data. The APl continues to be avail abl e

inbuild 4.3. To use the AP, use the followi ng header files:

[awi ps/ adapt/nav/i nc/ Navi gation.h (when calling fromQC), or
[awi ps/ adapt/ nav/i nc/ Navi gati on. H (when cal ling from C++)

Here is the prototype for the API:

voi d get _i mage_nav (

const char *inmge_source , /[* input */

const char *inmage_band , /[* input */

float *dx , /* output */
float *dy , /* output */
float *latl , /* output */
float *lat2 , /* output */
float *lonl , /* output */
float *lon2 , /* output */
long *nx , /* output */
long *ny , /* output */
long *projection , /* output */
long *relativity , /* output */
float *stdlatl , /* output */
float *angle2 , /* output */
float *truel at |, /* output */
float *align , /* output */
long *status); /* output */

FORTRAN cal | ers need not include anything to use this APlI, but nay view the
header files to see the function nanmes and cal | ing sequences. Both of the
include files naned above require six other include files:
hnHMC fileUtils. h
hmHMC i nterpUils. h
hmHMC_par seNum h
hmHMU_STATUS. h
hmHMJ_dest royQoj ect . h
hmHWMJ stringWils. h
either directly or indirectly. These nay be obtained fromthe TDL web site by
doi ng the foll ow ng:
1.First, bring up the TDL hone page (see section 7, “OnLine Resources and
URLs”, for the URL);
2.Fromthere, click on the “AWPS LOCAL APPLI CATI ONS DEVELOPMENT SUPPORT” | i nk
to bring up the “AWPS LOCAL APPLI CATI ONS DEVELOPMENT” page;
3.fromthere, click on the “DOMLQOAD UPLOAD' link to bring up the “Avail abl e
Files to Downl oad” page
4. Fromthere, click on the “C++ Navigati on Routines” choice, which will ftp
the above six include files (and a few other files as well) to you

Al (C++, C and FORTRAN) callers nust link to
[awi ps/ adapt/nav/lib/libNavigation.a

when building their executables. This APl searches the navigation file (an
ASCIl flat file called "Navigation.txt") for the navigational information for

-73

Table 4.2.4.1-2, cont.

the conbi nation of map projection, geographic area of coverage, and

radi onetric band specified by the calling argunents "i nage_source" and
"image_band", and returns that information to the caller. The file

"Navi gation.txt" is stored in a directory naned by the UN X environnent
variable "NAVFILE DIR'. The software reads "NAVFILE DIR' to find and open
"Navi gation.txt". Therefore, "NAVFILE DIR' nust be correctly set to the

conpl ete, absolute directory of "Navigation.txt" before "get_i nage_nav" can be
used. If "NAVFILE DIR" is incorrectly set, or cannot be found

"get _inmage_nav" will abort. The currently correct setting for "NAVFI LE D R
is "/aw ps/adapt/nav/data/".

The calling argunents for "get_inage_band", in al phabetical order, are as
fol |l ows:
"align" = (a pointer to)

a) for polar stereographic and Lanbert conformal projections, the
vertical longitude; the east longitude (in degrees) parallel to the
nmap projection's positive y axis.

b) for a local stereographic projection, the rotation angle of the
positive y axis in degrees clockwi se fromnorth

"angl e2" = (a pointer to)
a) for a tangent cone projection, same as stdlatl
b) for the secant cone projection, the second (furthest from pole)
latitude (in degrees north) at which the secant cone cuts the earth.
c) for a stereographic projection, the longitude (in degrees east) of
the center of the projection. A value of +/-90 indicates polar
st er eogr aphi ¢

"dx" = (a pointer to) the left-right (west-east) pixel size (in neters) at
the projection's "true" latitude

"dy" = (a pointer to) the bottomtop (south-north) pixel size (in nmeters) at
the projection's "true" latitude

"image_band" = (a pointer to) a string specifying the radionetric band used
by the satellite sensor to obtain the i nage data for which navigationa
information is wanted. Valid values are "i1ll1l" (for 11 mcron infra-

red), "il1l2" (for 12 mcron infrared), "i39" (for 3.9 micron infrared),
"iw" (for the 6.7 mcron infrared water vapor channel), and "vis" for
visible

"image_source" = (a pointer to) a string specifying the conbination of nap

proj ection and geographic scale of the inmage for which navigationa
information is wanted. Valid values are "conusC', "east CONUS', "nhSat"
"superNat 9", and "west CONUS"

"lat1l" = (a pointer to) the north latitude (in degrees) of the first or
lower left pixel

"lat2" = (a pointer to) the north latitude (in degrees) of the last or upper
ri ght pixel

-74

Table 4.2.4.1-2, cont.

"lonl" = (a pointer to) the east longitude (in degrees) of the first or
lower left pixel

"lon2" = (a pointer to) the east longitude (in degrees) of the last or upper
ri ght pixel
"nx" = (a pointer to) the nunber of pixels along a row (the right-to-left or

west -t 0-east) edges of the inmge

"ny" = (a pointer to) the nunber of pixels along a colum (the bottomto-top
or south-to-north) edges of the inage.

"projection" = (a pointer to) the integer grib code for the map projection

[En
1

Mer cat or
Lanbert confornal
st er eogr aphi ¢

o w
I

"relativity" = (a pointer to) an integer code for how vector conponents are
resol ved:

0 = vector conponents are resolved relative to easterly and northerly
directions.

1 = vector conponents are resolved relative to the defined grid in the
direction of increasing x and y.

"status" = (a pointer to) get_image_nav's return status. Possible val ues
are:

0 = The requested navigati on data was successfully found, extracted, and
returned.

2 = The software did not recognize the input conbination of
"image_source" and "i nage_band" val ues

6 = An attenpt to allocate nenory failed. Most likely, insufficient
nmenory was avail abl e.

7 = Most likely, the file "Navigation.txt" is corrupted.

8 = The file "Navigation.txt" could not be read. This is not
necessarily a problemwth the file.

9 = Indicates an undefinable error, possibly a bug in the software

"stdlat1l" = (a pointer to):

a) for a tangent cone projection, the tangency latitude; the latitude
(in degrees north) at which the earth is tangent to the nap
proj ection.

b) for a secant cone projection, the first (closest to pole) latitude
(in degrees north) at which the secant cone cuts the earth

c) for a stereographic projection, the latitude (in degrees north) of
the center of the projection

"truelat" = (a pointer to) the north latitude (in degrees) at which the
projection's pixel size is defined. For AWPS projections, "truelat" =
"stdl at1".

-75

Table 4.2.4.1-2, cont.

The input argunents "inage_source" and "inage_band" nust be C | anguage style
strings, that is, the character imediately following the last (rightnost)
printable character of the string nust be CHAR(0) in FORTRAN or NULL

[(char) 0] in C and C++.

Navi gational information that is not applicable to the specified map
proj ection and geographic area of coverage is returned with the val ue -9999.0
for type "float", or -9999 for type "long".

This APl is designed to be callable fromC++, C, and FORTRAN. Sinpl e exanpl es
may be viewed in the Navigation man page or in the Navigation test drivers
(navtest.C for C++, navtest.c for C and navtest.f for FORTRAN, note that
navtest.f will also need itlen.f). These may be obtained via the sane
procedure given above for getting the six include files needed by Navigation.h
and Navigation. H

Navi gational data for inmages in the /clean, /remap, and /regQip
subdirectories are not available through this API.

4.2.6 Satellite Soundings

Def err ed.

-76

Table 4.2.4.1-2, cont.
4.2.7 Text Database

The text subsystem consists of the text display, the Inform x database
supporting files, and the storage/retrieval of text nessages. The decoded
text products are stored in the fxatext database in the Inform x RDBVMB. The
products that are currently stored in the database include virtually all text
products with AFCS Product ldentification Labels (PILs), with additional PlLs
defined for O f-CONUS text products from Al aska and Pacific regions. The

dat abase works on a circular buffer basis, storing the newest version of each
product over the oldest. The nunber of versions of each product or category
of products is specified in a table in the file versions_|l ookup_table.dat. To
i nprove perfornmance, the storage space is fragnented based on the frequency of
requests for a category of products; the typical read response tine is 1 to 2
seconds.

The text database consists of six Inform x tables:
1 textproductinfo

This sem -static data table stores the controls and tracks version
information for each product that is stored in the fxatext database.
There are six colums in the table: cccid, nnnid, xxxid, versionstokeep
| atestversion, and | argeproduct. The |argeproduct attribute determ nes
whet her a product is stored in the |argetextproducts table
(largeproduct=1) as Inform x data type TEXT, or in the stdtextproducts
tabl e (largeproduct=0) as data type CHAR

st dt ext product s

This dynam c data table holds the individual METARs, TAFs, and ot her
smal | -si zed AFCS text products as CHAR data in the product colum. There
are seven colums in this table: cccid, nnnid, xxxid, versionnunber,
createtinme, product, and productlength. The version_nunber field
corresponds with the latestversion field fromthe textproductinfo table
for the correspondi ng product.

| ar get ext product s

This dynam c data table holds the individual |arge- or unknown-sized text
products as TEXT data in the product colum. There are 6 colums in this
table: cccid, nnnid, xxxid, versionnunber, createtine, and product. The
versi on_nunber field corresponds with the latestversion field fromthe
textproductinfo table for the correspondi ng product. Wen a new product
whose PIL (and therefore, its typical size) is unknown is stored to the
text database, it is stored to the |argetextproducts table by default,
since there is a larger size linmtation on the TEXT data type

state_match
This sem -static data table contains a listing of all xxx_id and ccc_id

conbinations for a state. There are three colums in the table: state
XxxX, and ccc.

-77

Table 4.2.4.1-2, cont.
1 versionstable

This sem -static data table contains a "tenplate" of a first-guess nunber
of versions to store for a product category (NNN) for a given AFCS Node
(CCO. It is localized to give a |larger nunber of versions for products
originating nearest the WFQ, and products such as METARs that are

nurer ous and of ten request ed.

4.2.7.1 Text product identifiers
The AFCS Product ldentifiers are as foll ows:

CCC - code (currently, AFCS Node) for the site where the product entered
NNN - code for the product category

XXX - 1- to 3-character code for the valid areal/site

SS - 2-character state code.

4,2.7.2 Supporting files

The text subsystemuses flat files to hold related static data tables
containing informational and control data. The function initializeD cts opens
and reads the flat file data, and is called by textWstnStorage, the main
driver for the textDB decoder. It then initializes the dictionaries for the
AFCS, collective, bit and upper air tables and | oads the | SPAN, national and
station arrays. For each incom ng product, its data descriptor, a 4-6
character code, is conpared to the collective table to see if it is a

coll ective, upper air or standard product. Then the correct decoder for the
type of product involved is called.

The data tables are as foll ows:

af os_| ookup_t abl e. dat - contains the origins mapped with the CCC

bit_table.dat - contains the NNN of National bit products napped
with AAA to be filled in with the local N6
office

coll ective_table.dat - contains the data descriptors of the collective

products mapped with the AFGCS | D CCOnnnXXX wher e
nnn is the corresponding NNN for that product

i span_tabl e. dat - contains the WMO header (data descriptor +
origin) for the non-collective products mapped
with the AFCS I D, used as a last resort

nati onal _category_tabl e.dat - contains the XXX napped with the CCC for
col l ective products

upai r _table.dat - contains the data descriptor for upper air
products mapped with the AFCS | D CCOnnnXXX
where nnn is the corresponding NNN for that
pr oduct

-78

Table 4.2.4.1-2, cont.

station_tabl e.dat - contains the five digit station nunbers mapped
with the XXX for the upper air products

4,2.7.3 Text Database |I/O API's

The interface to the text database is a UNI X conmand narmed textdb. In order
to maintain the integrity of the data in the text database, the use of the
textdb utility to read from wite to, or nodify the text database tables is
recommended over programming directly in SQ or using the Inform x dbaccess
utility.

The textdb command |ine options -r and -w, respectively, are used to read from
and wite to the database, with the product ID given as an argunent. Data are
read fromand witten to standard i nput and standard output. The textdb
comrand follows the UNI X convention of returning a status of zero upon

success, and non-zero if an error occurs.

For exanple, the UNI X command |ine
textdb -r DENNOADEN | nore

will pipe the latest Denver nowcast into the UNI X text reader nore for view ng
fromthe term nal wi ndow, and the command |ine

text db -w DENWRKNOW < wor kFi | e. t xt

will store the contents of workFile.txt (ASCII text file created by an
application program for exanple) as a nowcast text product in the text
dat abase. A standard text product nmay be up to 2000 bytes.

A NOTE OF CAUTI ON:
In using the APl, a great deal of care nust be taken to assure that:

1) only known, neaningful product IDs are used in witing products to the
dat abase. The textdb utility will wite any product to the database
that has a CCCONNNXXX | D between 6 and 9 characters, whether or not that
IDis avalid IDin a product table. Once the product is in the
dat abase there is no easy way to renove it, and so it will occupy
permanent space at the expense of other, valid text products.

2) no valid, existing products are overwitten without a good reason to do
so. Since only a fixed nunber of versions of a product are retained, a
l ocal application could cause all official versions of a product to be
| ost through a nunber of overwites.

At this tine, products in the text database only have the time attribute of
creationtinme, which is the systemclock time (UTC), in UNI X ticks (seconds
since 00:00, 1/1/1970) when the product was stored in the database. This tine
will normally have an offset fromthe valid tine of the text product data
itself. The only way to determne (set) the valid tine of the text product is
toread (wite) it inside the text of the product.

-79

Table 4.2.4.1-2, cont.

The conplete list of command |line options is as follows (AFOS product syntax
is used for af osO and product!| D paraneters):

-r afosOdd

-w productl D

-t productID { productID ..
-A productlD

-rh af osOd

-rd product ID

-v product| D versions

-1 nnn

-s -a state xxx ccc

-s -d state xxx ccc

-s -r state

For backward conpatibility:
read af osOmd

wite af osOm

do a standard AFCS read fromthe database
wite the product to the database

get create tine of last version(s)

get all tinmes for one productlD

read data fromthe database wi th specia
header s

a special header is inserted at the start
of every individual product, to allow
identification of each product

Change the nunber of versions to keep in
the textproductinfo table in the database

Change all NNN products to large text. A
large text product may be 31936 bytes
versus 2000 bytes for a standard text

pr oduct

Add another ID to the SS. NNN | ookup |i st
in the state_match table

Delete an ID fromthe SS. NNN | ookup |i st
in the state_match table

Display current list for state in SS. N\N
| ookup |i st

sane as -r afosCmd
sane as -w af osCmd

-80

Table 4.2.4.1-2, cont.
4.2.8 Digital Forecast Data

The Interactive Forecast Preparation (IFP) conponent of AWPS is in a state of
transition. IFP in Build 4.3 currently consists of the Interactive Conputer
Wor ded Forecast program which prinmarily uses the Inform x RDBVMS for storage
of digital forecast data. This is likely to change with the possible
introduction of the Interactive Forecast Preparation System (IFPS) in Build
5.x. For those reasons, this section and its subsections are deferred until
the time that the | FP software transition is settled and suitable APIs are
avail able to provide |l ocal applications with safe access to the | FP dat abase.

4,.2.8.1 Gids
Def err ed.
4,.2.8.2 Zone DFM

Deferred. This section will describe the Digital Forecast Matrix (DFM for
forecast zones.

4.2.8.3 Station DFM

Deferred. This section will describe the DFM for forecast points.
4.2.8.4 | FP Database Access and APls

Def err ed.

4.2.9 Verification Data

Verification data for Public and Aviation (TAF) forecasts are present in AWPS
Build 4.3. Verification of other forecast programareas is schedul ed for
AWPS Builds 5 and 6. This section and subsections are deferred.

4.2.9.1 Public

The public forecast verification data on AWPS in Build 4.3 are the sane data
as produced by the AFCS VERI FY program Refer to Section 8.4 of the AWPS
User’'s Manual for Release 4.3, and Section 9.5 of the System Manager’s Manual
for Release 4.3. However, unlike on AFCS, the verification data on AWPS are
stored in the Inform x database. The storage of these data in Informx is
conplicated, and will be described in a separate docunent. Once this
docunentation is available, it will be referenced in Section 7 (if online) or
8 (if hard copy).

4.2.9.2 Aviation

Sane as Section 4.2.9.1.

4.2.9.3 Marine

Deferred. No marine forecast verification data is available on AWPS in Build

4.3, except for the marine verification products produced at NCEP and stored
in the AWPS text database.

-81

Table 4.2.4.1-2, cont.
4.2.9.4 Hazardous Weat her

Deferred. No hazardous weather forecast verification is available on AWPS in
Bui ld 4. 3.

4.2.9.5 Fire Wather

Deferred. No fire weather forecast verification is available on AWPS in
Bui ld 4. 3.

4.2.9.6 Hydrologic

Deferred. No hydrol ogi cal forecast verification is available on AWPS in
Build 4.3.

4,2.9.7 Verification Database Access and APls
Def err ed.
4.2.10 NCEP (REDBOOK) G aphics

G aphics products from NCEP provided to AWPS are produced in the REDBOK
format. Many of these products are being phased out in favor of providing the
raw data needed to produce themlocally; however, many REDBOOXK products will
continue to be produced at NCEP for the foreseeable future. A | REDBOX
products are currently displayable within D2D, and no need for use of these
graphics in |local applications devel opnent is expected.

REDBOCK graphi cs are stored in the $FXA _DATA/ i span/ graph subdirectory. The
products are stored in individual flat files, in as-received format. A file
nam ng convention is used to identify the individual graphics products, as
fol |l ows:

<WVO | D>, <YYYYMVDD_HHWES. e (Brackets not part of the nane)

where <WMO ID> is the WWMO designator for the product, as extracted fromthe
WVO product header, and <YYYYMVDD HHWWEBS. mm® is the date and tinme of the
recei pt of the product (not the date and tine of the data contained in the
product). The .mmpart is the mlliseconds of the tine stanp. An exanple
file name is:

PYMABS5KWBC. 19961217_120605. 929

No decodi ng of the REDBOXK products is done to determne the data tinme. The
tine of receipt and the WWO ID are used in AWPS to infer the actual data
tines, the list of which are known for each product.

4.3 Site-Specific Data Sets

These data sets are typically docunmented in the appropriate User’s Quide and
Syst em Manager’'s Manual sections. Sonme information nmay already be found in

t hese docunments. Once all the appropriate data have been identified and their
docunent ati on sources have been found, they will be described in the follow ng
sections.

-82

Table 4.2.4.1-2, cont.

4.3.1 Site-Specific Static Data

Def err ed.

4.3.2 Site Custom zation and Preference Data

Def erred.

4,3.3 Site-Specific Data Formats and Locations
Def erred.

4.3.4 Site-Specific Data Creation and Managenent

Def err ed.

-83

Table 4.2.4.1-2, cont.
5.0 Initiation of Local Applications

A variety of mechanisns exist to |launch prograns on AWPS. Six existing
nmechani sns are described in the sections that follow. The preferred nethod
for initiating |ocal applications has not been determ ned, and will probably
depend to a great extent on the frequency at which the application needs to be
run, the type of interaction that it has with the user and with AWPS, and the
environnent in which it nmust be run.

5.1 Froma D2D Menu

Appl i cations can be launched froma D2D nenu by adding a button for the
application to one of the existing nenus to the right of the D2D "Scal e" nenu,
or by creating a new nmenu in this area. This is acconplished by adding
entries to two D2D nmenu configuration files, which are editable ASCI| text
files. A user with appropriate perm ssions can add or renove nenu itens for
applications by editing the configuration files, wthout needing to reconpile
the D2D software for the changes to take effect. D2D acts as a shell to
launch the application executable by nane, with command-line argunents. As an
exanpl e, the Volune Browser in the D2D Volune nenu is actually a stand-al one
application that is initiated by D2D and brings up its own grid selection and
| oadi ng nenu.

An inportant feature to note about applications that are | aunched by D2D in
this manner is that any standard input or output within the applicationis
connected via Unix pipes to D2D s application interface, not to the keyboard
or a termnal window. The application can send specific action requests to
D2D by witing text to standard output (for exanple, the Vol une Browser asks
for selected grids to be |oaded). The application can al so receive
notifications fromD2D by reading fromstandard i nput. These behaviors are
described in nore detail in Chapter 11 of the WO Advanced Overvi ew docunent
found on the FSL Hone Page.

Application initiation information for D2Dis in the formof a line of
delimted text which nust be added to the file $FXA HOVE/ dat a/ appl nfo. txt.
The format of an entry in the file applnfo.txt is:

key | label | executable | argunments | prestart | restart | one-instance

wher e:

key is a unique text string that will be used as the application key
label is the label that will appear on the D2D nenu for |aunching the
application

executable is the file to execute (nust be located in a D2D search path)
argunents are (obviously fixed) command |ine argunments for the
application

prestart tells whether the application is started automatically each tine
D2D is started

restart tells whether D2D automatically restarts the application if it
ever termnates

one-i nstance indicates whether D2D will allow only one copy of the
application to be running at one tine

Table 4.2.4.1-2, cont.

Exanpl e
vb | Vol une Browser. .. | vb | | v yvly
m neswp | M ne Sweeper... | mne_sweeper | -1 expert | n|] n| vy

The file $FXA HOVE/ data/l ocal i zati on/ nati onal Dat a/ dat aMenus. t xt control s the
D2D nenu | ayouts and the buttons contained within the menus. |In order for
your application's initiation button to appear in a nenu, an entry nust be
added to this file for the button. The syntax for the entries in the file is
described in the file itself. The unique application key val ue from
applnfo.txt rmust be included in the entry in dataMenus.txt. This key serves
as the linkage between the nmenu button entry in dataMenus.txt and the
initiation instructions that are in applnfo.txt.

The executabl e code for the application nust be placed in the search path that
D2D uses to find executabl e code for |ocally-devel oped applications (see
Section 2.3.4). Once the changes have been nade to the two configuration

files, D2D nust be restarted for the changes to appear in the nenu. |If
everyt hing has been done correctly, pushing the application's button fromits
menu will initiate and run the application

5.2 Fromthe CDE Pop-Up Menu

The Common Data Environnent (CDE) setup on AWPS provides a configurable
Pop-Up nenu that is activated by positioning the nmouse cursor on the desktop
background and hol di ng down the third button on the nouse. The option is
selected by highlighting it in the menu, or on a subnenu. Additional options
can be added to the nenu by editing the dtwmwe file in the ~ dt subdirectory
of the login home directory. This is sonething that shall not be attenpted in
the operational AWPS account except by the System Manager, since an error
could result in the inability to initiate the primary AWPS capabilities.

5.3 From CDE I cons

An application can be initiated from CDE by using the Create Action utility to
create a CDE action that initiates the program The user can select the icon

desired for the programor create a new icon for the application, and position
the resulting Action icon in the CDE nmenu of choice. This capability has been
previously described in Section 2.1, and its availability is dependent on the

setup of CDE in the account under which it is run

5.4 Fromthe Command Line

A stand-al one application can be run fromthe command |ine of the Unix shel
inatermnal window A termnal windowis brought up fromthe Tel net option
in the CDE Pop-Up Menu, described above. To run the application, the user
will need to log in to the host machine on which the application will run,
under an account whi ch has execute permi ssion on the application's executable
file or its initiation script, and type the command that |aunches the
appl i cation.

Table 4.2.4.1-2, cont.
5.5 Fromthe crontab

Any application that can be initiated fromthe shell (i.e., fromthe conmrand
pronpt) can be placed in alist file by crontab and initiated at schedul ed
days and tinmes by cron. Entries in a crontab file contain initiation tine
information and a text string that corresponds to the command that initiates
the application fromthe UNI X shell. Access to crontab is controlled by
configuration files which specify which users can or cannot use it. Al
application scheduling via crontab nust be coordinated with the System
Manager, since the possibility exists of overloading the systemif
applications are scheduled at the sane tinme as AWPS system cron jobs

The at utility can be used to schedule an application to run only once, at a
specified tine. The batch utility can be used to initiate an application as
soon as systemresources permt. It should be obvious that only background
applications that can run to conpletion w thout user input should be initiated
via crontab, at, or batch.

Al of at, batch, crontab, and cron are UNNX utilities, and are docunented in
their respective UNI X nan pages.

Care shoul d be taken when selecting the time to run a tine-schedul ed
application. AWPS currently initiates hundreds of applications in this
manner and, whenever possible, the |ocal application crons shall not overlap
the AWPS baseline crons that nay contend for resources. An AWPS devel oped
tool called “ucron” is described in Appendix 6 and can be used to graphically
map out the execution of the crons on your systens.

Exhibit 5.5-1. Arrival Pattern for Gids

Al so, the products received on the SBN have a relatively well-known arriva
pattern and, based on your application and its use of resources, care should
be taken to avoid heavy ingest tines. The graphs in Exhibits 3.3.1 and 3.3.2
are derived fromdecoder |ogs. They show the nunber of received products over
the period of a day fromO00Z to 00Z. The graph points represent 5-mnute
averages. Wth these graphs one can determ ne the | ow product activity tines.

-3

Table 4.2.4.1-2, cont.

5 Met ar Decoder Nunber of Products
6 80
HP 70
MC
/'S 60 -
N

er
Vi u 501
ce [)n 40
Qu
ar | € 30 4
d r 204

10 4
MC
/S 0 T
e.r 0] 2 4 6 8 10 12 14 16 18 20 22
Vi Ti me (Hours UTC)
ce
QI Exhibit 5.5-2. Arrival Pattern for METAR Products
ar

d is a software package which provides the nechani snms for assuring that
critical hardware and software conponents are continuously available in the
event of failure of a systemconponent. For exanple, the AWPS hardware
configuration has many redundant conponents (e.g., two DS's, AS's, FDDI
networks, Sinpact CP's, etc.). Each of these hardware conponents serves as a
backup to the other in case of the failure of one of the two. MJ Service
Quard is set up on AWPS to nmanage the hardware transition to the backup
configuration with no interruption of service.

In the sane nmanner, critical applications which require high availability can
be configured in MJ Service @Quard such that they are shut down, noved to a
different nachine, or restarted in the case of hardware or software failures.
The specific actions that are taken in response to failures can be configured
in MJ Service Quard. The type of applications which should be configured
within an MJ Servi ce Quard package are those which are critical to operations
and need to run continuously on the system Exanples of applications that

m ght require high availability are the data ingest software, system

noni toring software, or cron.

The MJ Service Quard software is fully docunented in the HP nanual Managi ng
MZJ Service GQuard. Details are beyond the scope of this docunent. Note that
configurati on and managenent of MJ Service Quard is a PRC and/or System
Manager responsibility, and shall not be nade available to, or attenpted by,
t he application devel opers.

The AW PS system provi des hooks (R4.3 or later) for individual sites to nanage
their site-specific applications during MJ ServiceQuard fail over of the DS or
AS swap packages. These hooks are in place to start/stop local site
applications (for exanple, simlar to the way that the shefdecoder process
noves upon failover). The followi ng site-controlled scripts that would be
executed (if present):

e /sbin/init.d/dsSlI TEprocesses [start| stop] # For dsswap package

-4

Table 4.2.4.1-2, cont.

e /sbin/init.d/aslSl TEprocesses [start|stop] # For aslswap package
e /sbin/init.d/as2Sl TEprocesses [start|stop] # For as2swap package

NOTE: The above are the "actual” filenanmes (i.e., DO NOT substitute Site ID
for "SITE").

MZ Servi ce@uard will execute the applicable local script (if present) upon
running/ halting a swap package. These local /shin/init.d script(s) should be
devel oped simlar to other /shin/init.d scripts, especially when handling of
the startup and shutdown of processes. GCeneration and nai ntenance of these
three (3) /sbin/init.d files is the site's responsibility. The operationa
version of all three (3) scripts shall be placed on all servers. Though only
the applicable script will be executed, this routine will sinplify maintenance
and provide an inplicit backup copy.

Wth regard to persistent processes on a platform(i.e., not related to swap
packages), the UNI X convention for bootup processes is the preferred
mechani sm

(1) Generate an /shin/init.d file for site-specific process

(2) Create a startup link in the /shin/rc3.d/ Sxxx synbolic link (where xxx
shoul d be > 950)

(3) Create a shutdown link in the /sbhin/rc2.d/Kyyy synbolic |ink (where
yyy shoul d be < 50)

(4) Synbolic link points to /shin/init.d/zzzz (where zzzz is a properly-
devel oped script which accepts a [start | stop] argunent.

Wth regard to Inform x, local applications can be redirected from accessing
the ONLINE engine (on DS1) to the ONLI NE_REP engine (replicated Informx
server on DS2) in one of two ways:

Met hod #1:
Currently, the OH applications “source” the file
[awi ps/ hydroapps/ . Apps_defaul ts for environnment variable values. Upon
failover, the MJ ServiceGuard scripts updates this file to change
ONLI NE/ ONLI NE_REP for the "active" Informx engine. A newy started process
coul d source in the correct database reference. This nmechanismwll not
handl e failover after the application has started, unless the application
error handling was designed to re-source the environnent (or at |east the
| NFORM XSERVER vari abl €) upon dat abase access fail ures

Met hod #2:
Sorre applications, including the MetarDecoder and sone OH "user"
applications, have logic which utilizes the Inform x "DBPATH=// ONLI NE_REP"
environnent variable. This variable allows the application to ook for an
alternate engine, if the existing connection breaks and/or cannot be re-
established. Details on the DBPATH nechani sm can be found in the Informx
Adm nistrator's Quide, Volunme 1, starting on page 25-23

Table 4.2.4.1-2, cont.
6.0 Product D ssem nation

Product dissem nation is the process by which products (official user
products, or other products and nessages) are delivered to users outside the
local AWPS configuration (outside the AWPS LAN). This discussion will be
limted to dissemnation of ASCII text products.

6.1 Dissem nation Mechani sns

AW PS provi des three basic nechanisnms for distribution and di ssem nation of
products: the Wde Area Network (WAN), the Local Data Acquisition and

Di ssem nation (LDAD) subsystem and the Asynchronous Product Schedul er (APS).
A direct connection fromAWPS to AFCS al so exists, along with software
utility to transfer products between the two systens. However, since AFCS is
sl ated for decomm ssioning, this nechanismwi |l not be described here. Refer
to the description of handl eOQJP.pl in the follow ng section for a description
of an alternate nethod of product distribution fromAWPS to AFCS.

WAN di stribution allow products to be sent directly between AWPS sites (WO
to WO WO to RFC and the reverse), to the NOAA Wather Wre Service (NW\B),
and to the Network Control Facility (NCF). Fromthe NCF, products can be
routed over the SBNto all AWPS sites, and to the NW6 Tel ecommuni cati ons
Gateway (NWBTGQ. From NWSTG products nmay be distributed over NOAAPORT, the
d obal Tel ecomuni cati ons System (GIS), the AFCS communi cati ons network, back
to the SBN via the NCF, to the NWAS, to NCEP, etc.

LDAD distribution allow access to sel ected products by outside users,
including authorized | ocal agency users and the general public. The only
current LDAD product dissenmnation nethod fromAWPS to LDAD to external users
is to place AWPS text products on the LDAD Bulletin Board Service (BBS) or
into files on the LDAD Server.

APS product distribution allows text products to be routed to/from external
PCs configured on AWPS comuni cations port if the PCis running Bubble or a
simlar program APS supports text product dissemnation fromthe PCto the
CRS and NWAB, and storage of text products to the AWPS text database.

6.1.1 WAN

Distribution of products over the WAN i s supported by a pair of Command Line
Interfaces CLls, called with options and required argunents in the same manner
as a UNl X command. The CLIs can be invoked manually fromcomrand line in the
UNI X shell, fromscripts, or from SYSTEM cal | s enbedded in conpiled code. The
two CLIs are called handl eQUP. pl and di stributeProduct, and the sel ection of
whi ch one to use depends on the type of product to dissenm nate. These two
CLls are referred to a wapper utilities; that is, they provide a convenient
programmer interface to nore conplex utilities, and isolate the programer
fromfuture changes in the lower level utilities.

Note that once a product is stored in the text database (see Section 4.2.7),
it may be nmanually addressed and distributed over the WAN fromthe AWPS Text
Wirkstation. This nechanismis fully described in Section 4.4 of the AWPS
User's Manual for Release 4.3. Since it is a nanual process not initiated
directly froma program it will not be discussed further in the AIFM

-1

Table 4.2.4.1-2, cont.

The handl eQUP. pl and distributeProduct CLI executable files are | ocated under
the $FXA HOVE/ bin directory. To use either of these CLIs, $FXA HOVE/ bi n nust
be in the executable path in your current shell, or the fully-qualified file
nane (e.g., $FXA HOVE bin/distributeProduct) must be used to invoke the CLI.
Conpl et e docunentation for handl eOUP. pl and distributeProduct, including
exanpl es of usage, is provided in Appendix 5 in the formof unix man pages for
each CLI.

A product to be dissem nated by handl eOUP. pl or distributeProduct should be in
the formof an ASCII text file, conplete but without the inclusion of any of
the AFCS, AWPS, or WMO header lines or the AWPS product identifier line (the
NNNXXX second |ine). The necessary header lines will be formatted and
prepended to the product upon transm ssion, based on its destination (AFCS or
WAN) and on the AWPS identifier specified in the CLI calling argunment |ist.
As an additional feature, the CLIs will also process the transmtted text (but
not the original product file) to assure that each line of text is termnated
with the <cr><cr><lf> characters expected by the NWBTG and ot her software.

It is inportant to note that for handl eOUP. pl or distributeProduct to attach
the correct AFCS or WMO conmuni cations header to the product, the product
header informati on nust be conplete and correct in the afos2aw ps.txt file,
and the CLI nmust be called with the correct AWPS ID for the product.

Q herwi se, handl eOUP. pl or distributeProduct will return an error status and
the product will not be able to transmtted or stored in the fxatext database.
See the handl eOUP. pl nman page in Appendix 5 for details and control file

| ocati ons.

A brief description of each of the CLIs and guidelines for their use is given
in the sections bel ow.

6.1.1.1 The handl eOUP interface

The handl eQUP. pl CLI encapsul ates several functions that need to be perforned
upon di ssem nation of Official User Products (OUPs). O ficial user products
i ncl ude wat ches, warnings, TAFs, State Forecast Products, Zone forecasts,
etc., which are distributed to the public, the media, and/or external
agencies. Oficial user products are all those for which there is an archive
requirenent at the WFQ RFC. Specifically, handl eOJP. pl can be directed to:

C store the product locally in the fxatext database,

C archive the product locally in a file

C conpose and attach any or all of the WvMDO, AFOS, and VAN distribution headers
to the product, as needed

C distribute the product across the AWPS WAN to the NCF, the SBN, and the
NWBTG and/or to the NWAS uplink, and

C send the product to the local AFOS interface when AWPS is in pre-
comm ssi oned node.

The handl eQUP CLI does not accommodate point-to-point product distribution,
i.e., the dissenmnation of a product to a particular site (e.g., to a single
nei ghboring WFO) on the AWPS WAN. Poi nt-to-point distribution is provided by
di stributeProduct. Product distribution fromcalls to the handleQUP.pl CLI is
determ ned by the product routing and handling tables in the NCF and the
NWBTG and the val ues of the predesignated prinmary and backup NWAS upl i nk

-2

Table 4.2.4.1-2, cont.

sites specified in the file /aw ps/ops/datal/nmhs/ nwwsup_dlist.data. For a
product sent to AFCS, its redistribution upon reaching AFCS is determ ned by
the val ue specified for the AFCS routing node in the call to handl eOUP, and by
the internal AFCS product routing configuration

6.1.1.2 The distributeProduct interface

The distributeProduct CLI encapsul ates functions that need to be perforned
upon di ssem nation of generic text products. The capabilities of
di stri buteProduct include the ability to

C specify actions to be taken by the receiving site upon product receipt,

C enclose an ASCI| or a binary file as an attachnment to the product nmessage
(not recommended, and not a capability to be abused by sending large files
over the WAN),

C conpose and attach any or all of the WvMDO, AFOS, and VAN distribution headers
to the product, as needed

C distribute the product to a list of one or more specific AWPS sites (any
WFQ, RFC, or National Center site on the AWPS WAN), and

C distribute the product across the AWPS WAN to the NCF, the SBN, and the
NWBTG and/or to the NWAS upli nk

Both point-to-point distribution and general distribution (via the NCF, NWSTG
SBN, and NWAB) of products are provided by distributeProduct. General product
distribution fromcalls to the distributeProduct CLI is determi ned by the
product routing and handling tables in the NCF and the NWBTG and the val ues
of the predesignated prinmary and backup NWAS uplink sites specified in the
file /aw ps/ops/data/mhs/ nwwsup_dlist.data. The distributeProduct CLI does
not provide a capability to send a product to the |l ocal AFCS, and no archiving
of products sent via this CLI is perforned.

Products and encl osures received at the destination AWPS site of a

di stri buteProduct invocation are stored in separate files located in the
directory associated with the receive handling specification, under a nane
whi ch includes the sending site ID and a nmessage | D nunber (e.g., PIT-12345).
Refer to the distributeProduct nman page in Appendix 5

The actions that can be taken upon receipt of a product at a site are
specified by the action keyword (see the nan page). A configuration file
contains the command lines that relate to each acti on keyword, and additiona
action keywords and commands can be added. However, it is not allowed for a
local site to unilaterally define new actions and action keywords, since these
items nust be nationally configured to be present and identical at all AWPS
sites. |If there is a need or desire for a local site to add new actions and
action keywords, a request can be submtted via the AWPS Local Applications
Home Page (see Section 7 for URL infornmation).

6.1.2 LDAD

LDAD is too conpl ex and extensive to be docunmented in the AIFM The reader is
referred to the detail ed LDAD docunentation. Setup and configuration of LDAD
and the BBS are docunented in Chapter 8 of the AWPS System Manager's Manua
for Release 4.3. (Oher LDAD docunentation describing the systemintegration
procedures for addition of new external data sources exists online on the

-3

Table 4.2.4.1-2, cont.

Internet (reference Section 7 for the URLs). As nore conplete LDAD
docunent ati on becones available, the AAIFMw || be updated with references and
location infornmation where the material may be found.

6.1.3 Asynchronous Product Schedul er (APS)

The APS all ows AWPS to be configured so that specified products are sent to
the PC upon receipt and storage in the AWPS database, and in addition, the PC
can i ssue one-tine requests for additional products fromAWPS. Conversely,
text products can be sent to AWPS fromthe PC via the APS, and APS on AW PS
will store the product in the text database and can be configured to: 1)route
the product to the Consol e Repl acenment System (CRS; i.e., NOAA Wat her Radio),
and/or 2) route the product to the NWW\8. To interface with the AWPS APS, the
renmote PC requires the Bubble program or any other application that obeys the
AFCS protocols and is software fl ow enabled to communicate with APS. Al the
APS software (Build 4.3) is currently present only on AWPS, not on the PC
side. The APS is docunented in Chapter 10 of the AWPS System Manager's
Manual for Release 4.3 (SMM, and no additional detail will be provided in
this document.

6.2 Product Archive

As mentioned in Section 6.1.1.1 for the handl eQUP CLI, handl eOUP autonatically
archives all Oficial User Products transnitted via this mechanism As

descri bed in the handl eOUP nman page in Appendix 5, the OJUPs with their
attached transm ssion headers are tenporarily stored in files in the

/ dat a/ f xal/ archi ve/ OUP/ scratch directory. This directory is nonitored hourly,
at the end of which interval all stored products are noved to the

/ dat a/ f xa/ ar chi ve/ QUP/ ar chi ve directory.

AS AN | NTERI M MEASURE AND ONLY | F ABSOLUTELY NECESSARY, | ocal applications

whi ch produce text products to be archived, but which do not dissem nate them
via handl eOUP, can place a copy of these products in files in the

/ dat a/ f xa/ archi ve/ OUP/ scratch directory. These products will then be
autonatically archived to the /data/fxalarchivel/ OJP/ archive directory and
purged fromthe scratch directory. Be sure that your application places wite
perm ssions at the owner, group, and other levels on the files in the scratch
directory so that they can be noved to the archive directory by the autonated
nmechanism Al so, be sure to use a different file nam ng nechani smthan

handl eOUP to distinguish your |ocal application products fromthose

di ssem nated by handl eOUP and which are part of the “legal” product archive on
AWPS. A nore general archiving nmechani smseparate fromthe “legal” product
archive is under devel opnent and expected to be available to | ocal
applications devel opers for AWPS Build 5.

Table 4.2.4.1-2, cont.

7.0 On-Line Resources and URLs

AWPS Local Applications Wb Site

The Met eorol ogi cal Devel opnent Laboratory naintains a web site for |ocal
application devel opnent infornmation exchange. The Universal Resource Locator
(URL) for the AWPS Local Applications web site is:

http://tgsv5. nws. noaa. gov/ tdl /aw ps/

The web site contains links that will allow the users to:

regi ster the use of local applications and provide notifications;
view an inventory of |ocal applications;

post and respond to user questions;

report and respond to software deficiencies;

downl oad regi stered | ocal application software and docunentati on;
view the AWPS Applications Integration Framework Manual ;

view the AWPS Local Application Managenent Policy;

vi ew approved | ocal application waivers; and

vi ew LAWG nont hly conference call m nutes.

DO

I nternet

Many additional resources of interest to |local application devel opnent are
avai l abl e through the Internet. Access to these resources is not available
from AW PS nachi nes, which are isolated fromthe Internet inside the AWPS
network. Infornmation accessed fromthe Internet nust be obtained via a

nmachi ne outside the AWPS network and saved to disk. To get the material to
AWPS, it nust be copied to a physical nedium (tape or renovabl e disk) and

|l oaded into AWPS, or it nust be transferred through a safe firewall fromthe
non- AWPS nachine to an AWPS nachine. Al transfers of external information
onto AWPS nust be coordinated with the | ocal System Manager, who has
responsibility for systemsecurity and inteqgrity.

Since information on the Internet changes frequently, URLs related to itens in
the AFMwi Il not be listed in the AAIFM Internet-accessible URLs of interest
to local applications devel opment are maintained on the ‘Links’ page of the
AW PS Local Applications web site. Links to selected web pages fromthe
Internet which are of wide interest or inportance will be available. These
will likely include:

Net CDF User's Cuide
FX- ALPHA C and C++ Codi ng Conventi ons
LDAD System Manager’s Manual , User Quide, and progranmm ng gui des

Table 4.2.4.1-2, cont.
8.0 References

Hewl ett - Packard Conpany, 1995: HP Process Resource Manager User's GQuide. HP
Part No. B3834-90002, Hew ett-Packard Conpany, 123 pp.

, 1995a: Managi ng MJ Service @Qiard. HP Part No. B3936-90003, Hew ett -
Packard Conpany, 146 pp.

1992b: HP_FORTRAN 9000 Progranmer's Reference, Volunme 1 and 2. HP Part
No. B2408-90010, Hewl ett-Packard Conpany, 865 pp.

, 1992c: HP-UX Reference, Release 9.0, Volune 1. HP Part No.
B2355- 90033, Hewl ett-Packard Conpany, 940 pp.

, 1992d: Programm ng on HP-UX. HP Part No. B2355-90026, Hew ett-Packard
Conpany, 412 pp.

, 1992e: Using HP-UX. HP Part No. B2910-90001, Hew ett-Packard Conpany,
302 pp.

Litton/ PRC I ncor porated, 2000: System Subsystem Design Description.
Avai l abl e from AWPS Program O fice, NOAA, U S. Departnent of Comrerce.

, 2000: System Manager's Manual for Release 4.3. Available from AWPS
Program O fice, NOAA, U S. Department of Commerce.

Nati onal Wat her Service, 2000: AWPS Local Applications Policy.
Nati onal GCceanographi c and At nospheric Administration, U S. Departnent of
Conmer ce, 4pp.

Nati onal Wat her Service, 2000: AWPS Local Application Inplenentation Plan.
Nati onal GCceanographi c and At nospheric Administration, U S. Departnent of
Conmer ce, 3pp.

Systens Interfaces and Headers, Volune 2 of the X Qpen Portability Quide,
Issue 4 (referenced in Section 3.1 of AIFM

Table 4.2.4.1-2, cont.
9.0 Acronyns and Abbrevi ations

The followi ng acronyns and abbreviations are used in this docunent:

ADAP2T AWPS Data Analysis and Product Preparation Tool s
AIFM Application Integrati on Framework Manual

AFCs Autonmation of Field Qperations and Services
ALERT Automated Local Evaluation in Real Tine

ANSI Amrerican National Standards Institute

APl Application Programer Interface

APS Asynchronous Product Schedul er

AS Applications Server

AsCll Amrerican Standard Code for Infornation |nterchange
ASCs Autonated Surface Chserving System

AWPS Advanced Wather Interactive Processing System
BCS. Baseline Configuration System

BLOB Binary Large Object

COE. Comon Desktop Environnent

CO-ROM Conpact D sc-Read Only Menory

CDoT Colorado Department of Transportation

ctl Comand Line Interface

cM Configuration Managenent

coO Comunications CSC

CONUS. Continental United States [Area]

cors Comercial Of-the-Shelf

cP Comunications Processor

cPU. Central Processing Unit

csC. Conputer Software Conponent

csa Conputer Software Configuration Item

D2D. [WO Advanced] D splay 2-D nensional

DARBE Denver AWPS R sk Reduction and Requirenents Eval uation
DAT Dgital Audio Tape

DB Database

DC Device Coordinates

Dbr Design, Developnent, and Testing [Teani

DFM. Dgital Forecast Mtrix

DM Data Managenent CSC

s Data Server

ESQ Enbedded Structured Query Language

FAC. File Access Controller

FDDI Fiber Dstributed Data Interface

FvV1 Federal Meteorological Handbook, Volune 1

FSL [NOAA] Forecast Systens Laboratory

GMB Gaphic Alphanureric Attributes Bl ock

B Ggahyte

ad@s. Ceographic Information System

aur Geenwnich Mean Tinme (see UTQ)

GES GCeosynchronous Qperational Environnental Satellite
GRIB @idded Binary [Data Fornmat]

GISs. dobal Tel ecomrunications Network

aJ Gaphical User Interface

H Hunman Conputer Interface CSC

HM Hydronmeteorol ogi cal Applications CSC

H Hewett-Packard [Corporation]

-1

Table 4.2.4.1-2, cont.

WO Hardware Configuration Item

ICD. Interface Control Docunent

ICW Interactive Conputer-Wrded Forecast [Application]

ID, id ldentifier

IFP Interactive Forecast Preparation

IGC. Interactive Gaphics Controller

km Kkiloneters

LAMP Local AWPS MX Program

LAN. Local Area Network

LDAD Local Data Acquisition and D ssem nation [Systeni

LFM. Limted Fine Mesh [Mdel]

MB Mgabyte, MIlibar

Mps Megabits per second

MC Mnitor and Control CsC

METAR Aviation Routine Wather Report

MAS Message Handling System

MS. Mdel Qutput Statistics

NCEP National Centers for Environnental Prediction

NCF. Network Control Facility

NESDIS National Environnental Satellite, Data and Infornation
Servi ce

NetCDF Network Common Data Form

NEXRAD Next Ceneration Wather Radar

NFS Network File System

NLDN National Lightning Detection Network

NM Nautical Mle

NOAA National Cceanic and At nospheric Adm nistration

NS National Wather Service

NBRFS NW River Forecasting System

NBTG. NW Tel ecommuni cati ons Gat enay

a bject Interface

G Qperating System

CSF. [NEXRAD] Qperational Support Facility

opP. Oficial User Product

PDB Product Description Block

PIL. [AFOS Product ldentifier Label

PSB. Product Synbol ogy Bl ock

PCsIX. Portable Qperating SystemlInterface for UN X

PRC. Litton/PRC Incorporated

PRM. [HP] Process Resource Manager

PUP. Principal User Processor

RAOB Raw nsonde Cbservation

RCS. Revision Control System

RDBMS Relational Data Base Managenent System

R&B. Red-Geen-Blue [Col or Conponents]

RLE. Run Length Encoded

RPG. Radar Product Generator

RSU. Renpte Sensing Units

SBN. Satellite Broadcast Network

SCCS Source Code Control System

SDN. Software Devel opment Notebook

SPECI Special METAR

S Structured Query Language

SsS System Support CSC

Table 4.2.4.1-2,

TAB .
TAF .
TBD . .
Tel / Tk
TDL . .
TLCSC .
u .
URL .
urc .
VAG .
WAN .
WFQA
WFO .
VHFS
WO .
WER- 88D .
XT

cont.

Tabul ar Al phanunerics Bl ock

Avi ati on Term nal Forecast

To Be Determ ned

Tool command | anguage / Tool Kit

[NOAA/ NWB] Met eor ol ogi cal Devel oprment Laboratory
Top-Level Conputer Software Conponent

User Interface

Uni ver sal Resource Locat or

Uni versal Time, Coordinated (see GWI)

[NCEP] Val ue- Added Gi ds

Wde Area Network [AW PS Communi cati ons Networ K]
WFO- Advanced [Syst eni

Weat her Forecast Ofice

WFO Hydr onet eor ol ogi cal Forecasting System

Worl d Met eorol ogi cal O gani zation

Wor kst ation

Weat her Surveill ance Radar, 1988 Doppl er

X- Ter m nal

Table 4.2.4.1-2, cont.
Appendi x 1

Net CDF APl exanples for reading point data files

This section describes nethods for reading and witing net COF point data
files, using METAR files as an exanpl e.

Two utilities included with net COF convert between binary netCDF files and a
text representation of netCDOF files in the CDL | anguage. The tools ncgen and
ncdunp are fully docunented in the Net COF User's @uide. Since the output of

one utility may be used as the input to the other, they may be consi dered

i nver ses.

The ncgen routine will create a netCDOF file froma CDL file. Additionally, it
will generate either C or FORTRAN source code to create a netCDF file if given
the proper flags. However, the source is useful only for relatively snall CDL
files since all the data is included in variable initialization in the
generated program Prograns in C and FORTRAN were created fromthe netar. cdl
file below, and there were 298 lines for the C code, and 401 lines for the
FORTRAN code.

The routine ncdunp produces the CDL text representation of a netCDF file on
standard output. It nay also be used to browse netCDF files for infornation
about the dinmensions, variables, and attributes, and to display the val ues of
t he dat a.

The UNI X syntax for invoking ncgen and ncdunp is:

ncgen [-b] [-0 netcdf _file] [-¢c] [-f] [-n] cdl _file
L. ncdunp [-c | -h] [-v varl,...], [-blang] [-f lang] [-]
| en]
e [-p float_digits[,double digits]] [-n nane]
[input_file]

The use of the flags is explained in the Net COF User's Quide.

The CDL file for the METAR data is as foll ows:

net cdf netar

{

di mensi ons:
maxAut oSt aLen = 6; /1 Max autonmated station type length
maxAut oWeat her = 5; /1 Max num of auto weather codes
maxAut oWalen = 12; /1 Max num of auto weather codes
maxRepLen = 6; [/l Max report type length
maxMETARLen = 256; /1 Max undecoded METAR | ength
maxSkyCover = 6; /1 Max num of sky cover groups
maxSkyLen = 8; /1 Max | ength of sky cover word

maxSt aNanien = 5; [/ Station nane |ength
maxWeat her Num /1 Max num of present weather codes

n
o

Al-1

Table 4.2.4.1-2, cont.

max\Weat her Len = 25;
recNum = UNLI M TED,
vari abl es:

/1 METAR ORI G N I NFO

/1 This variable does not appear in METARs.
| ong whol d(recNum) ;
wnol d: | ong_nanme = "nuneric WVO i dentification";
whol d: _Fil | Val ue = -2147483647,
wnol d: val id_range = 1, 89999;
whol d: ref erence = "station table";

char st ati onNane(recNum naxSt aNanien);
stationNanme: |l ong_name = "al phanuneric station identification";
stati onNane:reference = "station table";

/1 This variable does not appear in METARs.
fl oat latitude(recNum;

latitude:long_nane = "l atitude";
latitude:units = "degree_north";
latitude: FillValue = 3.40282346e+38f;
latitude:reference = "station table";

/1 This variable does not appear in METARs.
fl oat | ongi t ude(recNum ;

| ongi tude: | ong_nane = "l ongi tude";

| ongi tude: units = "degree_east";

I ongi tude: _Fill Value = 3.40282346e+38f;
| ongi tude: reference = "station table";

/1 This variable does not appear in METARs.
fl oat el evation(recNun;

el evation:long_nane = "el evation";

el evation:units = "neter";

el evation: _Fill Value = 3.40282346e+38f;
el evation:reference = "station table";

/1 NMETAR DATE AND TI ME

double tinmeCbs(recNum;
tineCbs:long_name = "tinme of observation";
timeCbs:units = "seconds since 1-1-1970";
tineQos: _FillValue = 1.797693134862315700e+308;

/1 This variable does not appear in METARs.
double tinmeNom nal (recNunj;
ti meNom nal : long_nane = "METAR hour";
timeNom nal :units = "seconds since 1-1-1970";
tineNomnal : _FillValue = 1.797693134862315700e+308;

/1 REPORT TYPE

char report Type(recNum maxRepLen);
report Type: | ong_nane = "report type";
report Type: ref erence = "FM+1";

Al-2

Table 4.2.4.1-2, cont.

/1 AUTO STATI ON TYPE

char aut oSt ati onType(recNum naxAut oStalen);
aut oSt ati onType: |l ong_nane = "autonated station type";
aut oSt ati onType:reference = "FM+1";

/1 SKY COVER GROUP

char skyCover (recNum naxSkyCover, maxSkylLen);
skyCover: |l ong_name = "sky cover";
skyCover:reference = "FMH+1";

fl oat skylLayerBase(recNum maxSkyCover);
skyLayer Base: | ong_nane = "sky cover |ayer base";
skyLayerBase: units = "neter";
skyLayerBase: _FillVal ue = 3.40282346e+38f;
skyLayerBase:valid _mn = 0;

/1 VISIBILI TY GROUP
fl oat visibility(recNum;

visibility:long_nane = "visibility";
visibility:units = "neter";
visibility: FillValue = 3.40282346e+38f;
visibility:valid mn = 0.0;

/| PRESENT WEATHER

char presWat her (recNum naxWat her Len);
presWeat her: 1 ong_nane = "present weat her";
presWat her: reference = "FVH 1";

/1 SEA LEVEL PRESSURE

fl oat sealevel Press(recNunm;
sealevel Press: |l ong_nane = "sea | evel pressure";
sealevel Press:units = "pascal ";
sealevel Press: _FillVal ue = 3.40282346e+38f ;

/| TEMPERATURE

fl oat tenperature(rechNum;
tenperature:|long_nane = "tenperature”;
tenperature:units = "kel vin";
tenperature: FillValue = 3.40282346e+38f;

/1 TEMPERATURE TO TENTHS

fl oat t enpFronirent hs(recNum ;
t enpFronirent hs: l ong_nane = "tenperature fromtenths of a degree Cel sius";
t enpFronirent hs: units = "kel vin";
t enpFronirenths: _Fill Val ue = 3.40282346e+38f;

/1 DEWPQO NT
fl oat dewpoi nt (recNun;
dewpoi nt : 1 ong_nane = "dewpoi nt";

"kel vin";
3.40282346e+38f;

dewpoi nt:units
dewpoi nt: _Fill Val ue

/1 DEWPAO NT TO TENTHS

Al-3

Table 4.2.4.1-2, cont.

fl oat dpFronTent hs(recNum ;
dpFronTent hs: | ong_nane = "dewpoint fromtenths of a degree Cel sius";
dpFronTent hs: units = "kel vin";
dpFronTent hs: _Fill Val ue = 3. 40282346e+38f ;

/1 WND GROUP

fl oat wi ndDi r (recNunj;
windDir:long_nane = "wind direction";
windDir:units "degree";
windDir:_FillValue = 3.40282346e+38f;

fl oat wi ndSpeed(recNunj;

wi ndSpeed: | ong_nanme = "wi nd speed”;
wi ndSpeed: uni ts = "neter/sec";

wi ndSpeed: _Fi |l Val ue = 3. 40282346e+38f;
wi ndSpeed: valid_mn = 0;

fl oat wi ndQust (recNunj ;
wi ndQust:long_name = "w nd gust"”;

wi ndQust:units = "meter/sec";
wi ndQust: _FillVal ue = 3.40282346e+38f;
wi nd@Qust:valid_mn = 0;

/1 ALTI METER

fl oat altineter(rechNun;
altineter:long_nane = "altinmeter setting";
altineter:units = "pascal ";

altineter: _FillValue = 3.40282346e+38f;
altineter:valid_mn = 0.0;

/1 24 HOUR TEMPERATURE

fl oat m nTenp24Hour (recNunj ;
m nTenp24Hour : | ong_nane = "24 hour min tenperature";
m nTenp24Hour : units = "kel vin";
m nTenp24Hour: _Fill Val ue = 3. 40282346e+38f ;

fl oat maxTenp24Hour (recNunj ;
maxTenp24Hour : | ong_nane = "24 hour nax tenperature";
maxTenp24Hour : units = "kel vin";
maxTenp24Hour: _Fill Val ue = 3. 40282346e+38f;

// 1 HOUR PRECI P
fl oat preci plHour (rechNum;

preci plHour:long_name = "1 hour precipitation”;
preci plHour: units = "neter";

preci plHour: _Fill Val ue = 3.40282346e+38f;

preci plHour:valid_mn = 0.0;

/1 3 HOUR PRECI P
fl oat preci p3Hour (rechNum ;
preci p3Hour: |1 ong_name = "3 hour precipitation";
preci p3Hour: units = "neter";
preci p3Hour: _Fil |l Val ue = 3.40282346e+38f;
preci p3Hour:valid_mn = 0.0;

/1 6 HOUR PRECI P
fl oat preci p6Hour (rechNum ;

Al-4

Table 4.2.4.1-2, cont.

preci p6Hour: | ong_name = "6 hour precipitation;
preci p6Hour: units = "neter";

preci p6Hour: _Fill Val ue = 3.40282346e+38f;

preci p6Hour:valid_mn = 0.0;

/1 24 HOUR PRECI P
fl oat preci p24Hour (recNunj ;
preci p24Hour: |l ong_name = "24 hour precipitation”;
preci p24Hour:units = "neter";
preci p24Hour: _Fill Val ue = 3. 40282346e+38f;
preci p24Hour:valid_mn 0.0;

/1 3 HOUR PRESSURE CHANGE GROUP
short pressChangeChar (recNunj ;

pressChangeChar: |l ong_nane = "character of pressure change";

pressChangeChar: _Fill Val ue = -32767s;
pressChangeChar:reference = "FM+1";

fl oat pressChange3Hour (recNunj ;

pressChange3Hour : l ong_nane = "3 hour pressure change";

pressChange3Hour:units = "pascal";
pressChange3Hour: _Fill Val ue = 3. 40282346e+38f;
pressChange3Hour:valid_mn = 0.0;

/1 CORRECTI ON FLAG

I ong correction(recNunm;
correction:long_name = "corrected METAR indicator";
correction: _FillValue = -2147483647;

/1 RAW METAR MESSACE
char r amVETAR(r ecNum naxMETARLen) ;
rawMETAR | ong_nanme = "raw METAR nessage”;

/1 GLOBAL ATTRI BUTES
//:title = "METAR - Aviation Routine Wather Report";

A programto generate FORTRAN code that reads any netCDF file nmay be

downl oaded fromthe Unidata web site. The program gennet.f,

witten by Barry

Schwartz, is found at ftp://ftp.unidata.ucar.edu/ pub/netcdf/contrib. After
the program asks the user for the nane of a netCDF file to read, it opens that
file and gets information on the variables and their dinensions wth net COF
calls. It then generates a FORTRAN program (readnet.f) that will read that
netCDF file and any other file of that data type. The user only has to wite
FORTRAN statenents to print the data or to pass the data to another program

To conpile the programon a UN X system type:

f77 +E6 gennet.f /usr/local/netcdf/lib/libnetcdf.a

Al-5

Table 4.2.4.1-2, cont.

The program gennet.f was conpiled and run with a METAR fil e naned
19970508_1200. The resulting programis listed bel ow, and should read any
AW PS METAR net CDF file.

C FORTRAN TEMPLATE FOR FI LE= 19970508_1200

PARAMETER (NVARS=32) ! NUMBER OF VARI ABLES

PARAMETER (NREC= 2157) I'CHANGE TH S TO GENERALI ZE
C VARI ABLE | DS RUN SEQUENTI ALLY FROM 1 TO NVARS= 32

| NTEGER* 4 RCODE

| NTEGER*4 RECDI M

CHARACTER*50 | ong_nane(nvars)

CHARACTER*50 nane(100)
C ****\VVARI ABLES FOR THI S NETCDF FI LE****

C

I NTEGER*4 wol d (NREC)
CHARACTER*1 st ati onNane (5, NREC)
REAL* 4 | atitude (NREC)

REAL* 4 | ongi t ude (NREO)

REAL* 4 el evation (NREO)

REAL* 8 ti meCos (NREO)

REAL* 8 ti neNom nal (NREO)
CHARACTER*1 report Type (6, NREC)
CHARACTER*1 aut oSt ati onType (6, NREC)
CHARACTER*1 skyCover (8, 6, NREC)
REAL* 4 skyLayer Base (6, NREC)
REAL* 4 visibility (NREC)
CHARACTER* 1 pr es\Wat her (25, NREC)
REAL* 4 sealevel Press (NREO)

REAL* 4 tenperature (NREO)

REAL* 4 t enpFr onfTent hs (NREO)

REAL* 4 dewpoi nt (NREO)

REAL* 4 dpFronTent hs (NREO)

REAL* 4 wi ndDi r (NREC)

REAL* 4 wi ndSpeed (NREO)

REAL* 4 wi ndQust (NREC)

REAL* 4 al tineter (NREO)

REAL* 4 m nTenp24Hour (NREO)

REAL* 4 maxTenp24Hour (NREO)

REAL* 4 pr eci plHour (NREO)

REAL* 4 pr eci p3Hour (NREO)

REAL* 4 pr eci p6Hour (NREO)

REAL* 4 preci p24Hour (NREO)

| NTEGER* 2 pr essChangeChar (NREO)

REAL* 4 pr essChange3Hour (NREO)

| NTEGER*4 correction (NREO)
CHARACTER*1 r awVETAR (256, NREQ)

Ck************************************

character*80 input_file

| NTEGER* 4 START(10)

| NTEGER* 4 COUNT(10)

| NTEGER VDI M5(10) ! ALLONV UP TO 10 DI MENSI ONS
CHARACTER* 31 DUMWY

Al-6

Table 4.2.4.1-2, cont.

C LONG NAMES FOR EACH VAR ABLE
C
data | ong_nane/
*' WO nuneric station ID ',
*' Al phanuneric stati on name ',
*'latitude ',
*' | ongi tude ',
*' el evation ',
*'time of observation ',
*' METAR hour ',
*' Report type '
*' Automat ed station type ',
*' Sky cover ',
*' Sky cover |ayer base ',
*visibility '
*' Present weat her ',
*' Sea | evel pressure ',
*' tenperature '
*'tenperature fromtenths of a degree Cel sius ',
*' dewpoi nt ',
*' dewpoi nt fromtenths of a degree Cel sius ',
*''Wnd direction ',
*''Wnd speed ',
*''Wnd gust ',
**Altinmeter setting ',
*' 24 hour min tenperature ',
*' 24 hour max tenperature ',
*''1 hour precip ',
*'3 hour precip ',
*'6 hour precip ',
*' 24 hour precip ',
*' Character of pressure change ',
*' 3 hour pressure change ',
*' Corrected METAR indicator ',
*' Raw METAR nessage "

wite(6,1)
1 format (' enter your input file')
read(5,2) input_file
2 f or mat (a80)
i | en=i ndex(input_file,"’ ")
nci d=ncopn(input _file(1:ilen-1), 0, rcode)
CALL NCI NQ(NCI D, NDI M5, NVARS, NGATTS, RECDI M RCCDE)
CALL NCDI NQ(NCI D, RECDI M DUMWY, NRECS, RCCDE)

C I'NRECS! NOW CONTAI NS NUM RECORDS FOR THI' S FI LE

C

C statenents to fill wrold

C
ivarid = ncvid(ncid, "' wrmld ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 10 J=1, \VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE

Al-7

Table 4.2.4.1-2, cont.

C
C
C

C
C
C

C
C
C

C
C
C

10

20

30

40

START(J) =1

COUNT(J) =NDSI ZE

CONTI NUE

CALL NCVGT(NQ D, i vari d, START, COUNT,
+wrol d , RCODE)

statenents to fill stationNane

ivarid = ncvid(ncid,'stati onNane ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1
DO 20 J=1, N\VDIM
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
CONTI NUE
CALL NCVGTC(NC D, i vari d, START, COUNT,
+st at i onNarre , LENSTR, RCODE)

statenents to fill latitude

ivarid = ncvid(ncid,'latitude ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 30 J=1, N\VDIM

CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE

START(J) =1

COUNT(J) =NDSI ZE

CONTI NUE

CALL NCVGT(NCI D, i vari d, START, COUNT,
+l ati tude , RCODE)

statenents to fill |ongitude

ivarid = ncvid(ncid,'longitude ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1
DO 40 J=1, N\VDIM
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,
+l ongi t ude , RCODE)

statenents to fill elevation

ivarid = ncvid(ncid,'elevation ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 50 J=1, N\VDIM

Al-8

Table 4.2.4.1-2, cont.

CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE

START(J) =1
COUNT(J) =NDSI ZE
50 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,
+el evati on , RCODE)
C
C statenents to fill timeCos
C
ivarid = ncvid(ncid,'ti nreCos ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI M5, NVS, ROODE)
LENSTR=1
DO 60 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
60 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,
+t i mneCbs , RCODE)
C
C statenents to fill timeNom nal
C
ivarid = ncvid(ncid,'tinmeNom nal ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1
DO 70 J=1, N\VDIM
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
70 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,
+t i meNomi nal , RCODE)
C
C statenents to fill reportType
C
ivarid = ncvid(ncid,'reportType ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, RCODE)
LENSTR=1
DO 80 J=1, N\VDIM
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
80 CONTI NUE
CALL NCVGTC(NC D, i vari d, START, COUNT,
+r eport Type , LENSTR, RCCODE)
C
C statenents to fill autoStationType
C
ivarid = ncvid(ncid,"autoStationType ', rcode)

CALL NCVI NQUNCI D, i vari d, DUMWY, NTP, NVvDI M VDI M5, NVS, RCCDE)

Al-9

Table 4.2.4.1-2, cont.

LENSTR=1
DO 90 J=1, N\VDIM
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
90 CONTI NUE
CALL NCVGTC(NC D, i vari d, START, COUNT,
+aut oSt ati onType , LENSTR, RCCODE)
C
C statenents to fill skyCover
C
ivarid = ncvid(ncid,' skyCover ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1
DO 100 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
100 CONTI NUE
CALL NCVGTC(NC D, i vari d, START, COUNT,

+skyCover , LENSTR, RCODE)
C
C statenents to fill skylLayerBase
C
ivarid = ncvid(ncid,'skylLayerBase ', rcode)
CALL NCVI NQUNCI D, i vari d, DUMWY, NTP, NvDI M VDI M5, NVS, RCCODE)
LENSTR=1

DO 110 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

110 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+skylLayer Base , RCODE)

C

C statenents to fill visibility

C
ivarid = ncvid(ncid,'visibility ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI M5, NVS, ROODE)
LENSTR=1

DO 120 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

120 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+visibility , RCODE)
C
C statenents to fill presWather
C

Al-10

Table 4.2.4.1-2, cont.

ivarid = ncvid(ncid,' presWat her ', rcode)
CALL NCVI NQUNCI D, i vari d, DUMWY, NTP, NvDI M VDI M5, NVS, RCODE)
LENSTR=1

DO 130 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

130 CONTI NUE
CALL NCVGTC(NCI D, i var i d, START, COUNT,

+pr es\Wat her , LENSTR, RCCODE)
C
C statenents to fill sealevel Press
C
ivarid = ncvid(ncid,' sealLevel Press ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 140 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

140 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+sealevel Press , RCODE)
C
C statenents to fill tenperature
C
ivarid = ncvid(ncid,'tenperature ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 150 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

150 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+t enper ature , RCODE)
C
C statenents to fill tenpFronTenths
C
ivarid = ncvid(ncid,'tenpFronTent hs ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI M5, NVS, ROODE)
LENSTR=1

DO 160 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
160 CONTI NUE
CALL NCVGI(NCI D, i vari d, START, COUNT
+t enpFr onTent hs , RCODE)

Al-11

Table 4.2.4.1-2, cont.

C statenents to fill dewpoint

C
ivarid = ncvid(ncid,' dewpoi nt ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 170 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

170 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+dewpoi nt , RCODE)
C
C statenents to fill dpFronTenths
C
ivarid = ncvid(ncid,'dpFronfTent hs ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 180 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

180 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+dpFronTent hs , RCODE)
C
C statenents to fill windDr
C
ivarid = ncvid(ncid,'w ndDr ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 190 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

190 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+wi ndDi r , RCODE)
C
C statenents to fill w ndSpeed
C
ivarid = ncvid(ncid,"'w ndSpeed ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 200 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

200 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

Al-12

Table 4.2.4.1-2, cont.

C
C
C

210

C
C
C

220

C
C
C

230

C
C
C

+wi ndSpeed , RCODE)
statements to fill w ndCust
ivarid = ncvid(ncid,"'w ndQust ', rcode)

CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1
DO 210 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,
+wi ndQust , RCODE)

statenents to fill altinmeter

ivarid = ncvid(ncid,"'altineter ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 220 J=1, NVDIM

CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE

START(J) =1

COUNT(J) =NDSI ZE

CONTI NUE

CALL NCVGT(NCI D, i vari d, START, COUNT,
+al ti neter , RCODE)

statenents to fill m nTenp24Hour

ivarid = ncvid(ncid,' m nTenp24Hour ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1
DO 230 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)
LENSTR=LENSTR* NDSI| ZE
START(J) =1
COUNT(J) =NDSI ZE
CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,
+m nTenp24Hour , RCODE)

statenents to fill maxTenp24Hour

ivarid = ncvid(ncid,' maxTenp24Hour ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROCODE)
LENSTR=1

DO 240 J=1, N\VDI M

CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, RCODE)

LENSTR=LENSTR* NDS| ZE

START(J) =1

COUNT(J) =NDSI ZE

Al-13

Table 4.2.4.1-2, cont.

240 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+max Tenp24Hour , RCODE)
C
C statenents to fill preciplHour
C
ivarid = ncvid(ncid,' preci plHour ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 250 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

250 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+pr eci plHour , RCODE)
C
C statenents to fill precip3Hour
C
ivarid = ncvid(ncid,' preci p3Hour ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 260 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

260 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+pr eci p3Hour , RCODE)
C
C statenents to fill precip6Hour
C
ivarid = ncvid(ncid,' preci p6Hour ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 270 J=1, \VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

270 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+pr eci p6Hour , RCODE)
C
C statenents to fill preci p24Hour
C
ivarid = ncvid(ncid,' preci p24Hour ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 280 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE

Al- 14

Table 4.2.4.1-2, cont.

START(J) =1
COUNT(J) =NDSI ZE
280 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+pr eci p24Hour , RCODE)
C
C statenents to fill pressChangeChar
C
ivarid = ncvid(ncid,' pressChangeChar ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, NVDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 290 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

290 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+pr essChangeChar , RCODE)
C
C statenents to fill pressChange3Hour
C
ivarid = ncvid(ncid,' pressChange3Hour ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 300 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

300 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+pr essChange3Hour , RCODE)
C
C statenents to fill correction
C
ivarid = ncvid(ncid,'correction ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 310 J=1, N\VDI M
CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE

310 CONTI NUE
CALL NCVGT(NCI D, i vari d, START, COUNT,

+correction , RCODE)

C

C statenments to fill rawMVETAR

C
ivarid = ncvid(ncid,'ramETAR ', rcode)
CALL NCVI NQ(NCI D, i vari d, DUMWY, NTP, N\VDI M VDI VB, NVS, ROODE)
LENSTR=1

DO 320 J=1, NVDI M

Al-15

Table 4.2.4.1-2, cont.

CALL NCDI NQ(NCI D, VDI M5(J) , DUMWY, NDSI ZE, ROCDE)
LENSTR=LENSTR* NDS| ZE
START(J) =1
OOUNT(J) =NDSI ZE
320 CONTI NUE
CALL NCVGTC(NCI D, i var i d, START, COUNT,
+r aWVETAR , LENSTR, RCODE)

followi ng code: checks output code code against current input
file

O0O0O000

call ncing(ncid, ndi ns, nvarsc, ngatts, nrecdi mrcode)
i f(nvarsc.ne.nvars) wite(6, 340)
340 format (' nunber of variabl es has changed')

C
CALL NCCLOS(NGl D, RCCDE)
C
C
C HERE |'S WHERE YOU WRI TE STATEMENTS TO USE THE DATA
C
STOP
END

Since this generated programdoes not wite out data values, it was re-witten
as a subroutine so that any program m ght access the METAR data val ues with an
APlI. At the sane tine the subroutine was reorganized and rewitten, to the
extent possible, according to the TDL FORTRAN Codi ng Qui del i nes (see
Attachrment 2 of the AIFM. Exceptions to the TDL FORTRAN capitalization rules
were required to integrate with the NetCDF routines. This routine was tested
agai nst ncdunp and produced the sane results. The code for the nanually-
revised routine is as follows:

SUBRQUTI NE RDVETAR(CFI LE, NREC, wnol d, st ati onNang, | ati t ude,
| ongi tude, el evation, ti meCbs, ti reNom nal , report Type,
aut oSt ati onType, skyCover, skylLayer Base, visibility,
pres\Wat her, sealLevel Press, t enper at ur e, t enpFr onTent hs,
dewpoi nt, dpFr onTent hs, wi ndDi r, wi ndSpeed, wi ndQust,
al ti neter, m nTenp24Hour , naxTenp24Hour , preci plHour,
pr eci p3Hour, preci p6Hour, preci p24Hour, pr essChangeChar,
pr essChange3Hour, correcti on, r amVETAR, NCCDE)

~No o~ wNBRE

MAY 1997 PEACHEY GSC HP
JULY 1999 MORRI S GSC HP
CHANGED pr essChange3hour TO REAL FROM | NTEGER

PURPOSE
TH' S ROUTI NE RETURNS ALL THE VARI ABLE VALUES IN A
METAR NETCDF FILE G VEN THE FI LE NAME.

O0O0O0O0O0O0O000

Al-16

Table 4.2.4.1-2, cont.

OO0 O000000000O00O0

DATA SET USE
CFI LE - NAME OF METAR NETCDF FI LE (| NPUT)

VARl ABLES
CFl LE = METAR NETCDF FI LE TO PROCESS (/| NPUT)
(CHARACTER* 80)
NREC = NUMBER OF RECORDS | N THE FI LE (| NPUT)
wnol d(NREC) = WD NUMVERI C STATION I D (QUTPUT)
stati onNane(5, NREC) = STATI ON NAME (OUTPUT) (CHARACTER*1)
| atitude(NREC) = LATITUDE (QUTPUT)
| ongi tude(NREC) = LONG TUDE (QUTPUT)
el evati on(NREC) = ELEVATI ON (QUTPUT)
ti meOos(NREC) = TIME OF OBSERVATI ON (QUTPUT) (REAL*8)
ti meNom nal (NREC) = METAR HOUR (OUTPUT) (REAL*8)
report Type(6, NREC) = REPORT TYPE (QUTPUT) (CHARACTER*1)
aut oSt ati onType(6, NREC)
= AUTOVATED STATI ON TYPE (QUTPUT) (CHARACTER*1)
skyCover (8, 6, N\REC) = SKY COVER (OUTPUT) (CHARACTER*1)
skyLayer Base(6, NREC)
= SKY COVER LAYER BASE (QUTPUT)
visibility(NREC) = VISIBILITY (OUTPUT)
pr es\Weat her (25, NREC)
PRESENT WEATHER (OUTPUT) (CHARACTER*1)
sealevel Press(NREC) = SEA LEVEL PRESSURE (QUTPUT)
t enper at ur e(NREC) = TEMPERATURE (QUTPUT)
t enpFr onirent hs(NREC)
= TEMPERATURE FROM TENTHS OF A DEGREE C (QUTPUT)
dewpoi nt (NREC) DEWPQ NT (QUTPUT)
dpFronTent hs(NREC) = DEWPO NT FROM TENTHS OF A DEGREE C (QUTPUT)
wi ndDi r (NREC) = WND DI RECTI ON (QUTPUT)
wi ndSpeed(NREC) = WND SPEED (OUTPUT)
wi ndGust (NREC) = WND GUST (QUTPUT)
altimeter (NREC) = ALTI METER SETTING (QUTPUT)
m nTenp24Hour (NREC) = 24 HOUR M N TEMPERATURE (QUTPUT)
maxTenp24Hour (NREC) = 24 HOUR MAX TEMPERATURE (QUTPUT)
preci plHour (NREC) = 1 HOUR PRECI P (QUTPUT)
preci p3Hour (NREC) = 3 HOUR PRECIP (QUTPUT)
preci p6Hour (NREC) = 6 HOUR PRECIP (QUTPUT)
preci p24Hour (NREC) = 24 HOUR PRECI P (QUTPUT)
pr essChangeChar (NREC)
= CHARACTER OF PRESSURE CHANGE (OUTPUT)
pr essChange3Hour (NREC)
= 3 HR PRESSURE CHANGE (QUTPUT)
correcti on(NREC) = CORRECTED METAR | NDI CATOR (QUTPUT)
r awVETAR(256, NREC) = RAW METAR MESSAGE (QUTPUT)
NCCDE = NETCDF ERROR MESSAGE (QUTPUT)

CDUMMY = RETUNED VARI ABLE NAVE (| NTERNAL)
| CNT(10) = VECTOR OF NUMBER OF | NDI CES SELECTED ALONG EACH
DI MENSI ON (| NTERNAL)
ILEN = LENGTH OF FILE NAVE (| NTERNAL)
| START(10) = | NDI CES | N VAR ABLE WHERE FI RST OF DATA
VALUES READ (| NTERNAL)
| VAR D = VAR ABLE | D (| NTERNAL)

Al-17

Table 4.2.4.1-2, cont.

LENSTR = LENGTH OF STRI NG (| NTERNAL)
NCI D = NETCDF | D (I NTERNAL)
NDI M5 = RETURNED NUMBER OF DI MENSI ONS FOR NETCDF FI LE
(1| NTERNAL)
NDSI ZE = SI ZE OF DI MENSI ON (| NTERNAL)
NGATTS = RETURNED NUMBER OF GLOBAL ATTRI BUTES FOR
NETCDF FI LE (| NTERNAL)
NRCDI M = RETURNED | D OF THE UNLI M TED DI MENSI ON
FOR THE NETCDF FILE (1 NTERNAL)
NTP = RETURNED VAR ABLE TYPE (1 NTERNAL)
NVARSC = RETURNED NUMBER OF VAR ABLES FOR NETCDF FI LE
(1| NTERNAL)
NVDI M = NUVBER OF DI MENSI ONS FOR VARI ABLE (| NTERNAL)
NVDI MB(10) = VECTOR OF NVDI M Di MENSI ON | DS CORRESPONDI NG
TO VARI ABLE DI MENSI ONS (| NTERNAL)
NVS = NUMBER OF VAR ABLE ATTR BUTES (| NTERNAL)

RCQUTI NES CALLED
NCOPN, NCINQ NCDINQ NCVINQ NCVI D, NCVGI, NCVGIC

ER R R R Sk S R R R R R Sk R e S S kR R R R R R S kR S R R R ke R R R R ok e O R

O0QOOO0OO0O0O0O0O0O0O0O0O00O0000O0000O0

DEFI NE NUVBER OF VAR ABLES
PARAMETER (NVARS=32)

C

CHARACTER*80 CFI LE

CHARACTER*1 st at i onNane(5, NREC)

CHARACTER*1 report Type(6, NREC), autoStati onType(6, NREC)

CHARACTER* 1 skyCover (8, 6, NREC), presWat her (25, NREC)

CHARACTER*1 r awVETAR(256, NREC)

CHARACTER* 31 CDUMWY
C

| NTEGER NREC, wrol d(NREC), correcti on(NREC), NCODE

| NTEGER pr essChangeChar (NREC)

| NTEGER | START(10), | CNT(10), NVDI MS(10), NRCDIM LENSTR

| NTEGER NCI D, NDI M5, NGATTS, NTP, NVS, |VARI D, |LEN, NVARSC

| NTEGER NVDI M NDSI ZE
C

REAL latitude(NREC), |ongitude(NREC), el evation(NREC)

REAL* 8 ti meCbs(NREC), tinmeNom nal (NREC)

REAL skyLayer Base(6, NREC), visibility(NREC

REAL sealevel Press(NREC), tenperat ure(NREC)

REAL t enpFroniTent hs(NREC), dewpoi nt (NREC)

REAL dpFronTent hs(NREC), wi ndDi r (NREC), wi ndSpeed(NREC)

REAL wi ndQust (NREC), al ti neter (NREC)

REAL m nTenp24Hour (NREC), maxTenp24Hour (NREC)

REAL preci plHour (NREC), preci p3Hour (NREC)

REAL preci p6Hour (NREC), preci p24Hour (NREC)

REAL pr essChange3Hour (NREC)
gk**
C

| LEN=I NDEX(CFI LE, ')

NCI D=NCOPN(CFI LE(1: | LEN- 1), 0, NOCDE)

Al-18

Table 4.2.4.1-2, cont.

OO0

10

OO0

20

OO0

30

OO0

CALL NCI NQ(NCI D, NDI M5, NVARS, NGATTS, NRCDI M NCCDE)
CALL NCDI NQ(NCI D, NRCDI M CDUMVY, NRECS, NCODE)

STATEMENTS TO FI LL wnol d

| VAR D = NCVI D(NCI D, ' wol d ", NCODE)
CALL NCVI NQ(NCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI VB, NVS, NCODE)
LENSTR=1

DO 10 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, wrol d, NOCCDE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FILL STATION I D

I VARID = NCVI D(NCI D, ' stati onNane ', NCCDE)
CALL NCVI NQ NCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 20 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGTC(NCI D, | VAR D, | START, | CNT, st at i onNane, LENSTR, NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL LATI TUDE

VAR D = NOVID(NCI D, ' | atii t ude ", NCODE)
CALL NCVI NQ(NCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI VB, NVS, NCCDE)
LENSTR=1

DO 30 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, | at i t ude, NOCDE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL LONG TUDE
I VARID = NCVID(NCI D, ' | ongi t ude ', NCCDE)

Al-19

Table 4.2.4.1-2, cont.

CALL NCVI NQUNCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 40 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
40 CONTI NUE

C
CALL NCVGT(NCI D, | VARI D, | START, | CNT, | ongi t ude, NOODE)
| F(NCCDE . NE. 0) GOrO 900

C

C STATEMENTS TO FI LL ELEVATI ON

C
I VARID = NCVID(NCI D, ' el evati on ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

C

DO 50 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
50 CONTI NUE

C
CALL NCVGT(NCI D, | VARI D, | START, | CNT, el evat i on, NCODE)
| F(NCODE . NE. 0) GOTO 900

C

C STATEMENTS TO FI LL TI MECBS

C
I VARID = NCVID(NCI D, ' ti meCbs ", NOCDE)
CALL NCVI NQ(NCI D, | VARI D, CDUMW, NTP, N\VDI M NVDI VS, NV'S, NCCDE)
LENSTR=1

C

DO 60 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
60 CONTI NUE

C
CALL NCVGT(NCI D, | VARI D, | START, | CNT, t i meCbs, NOCDE)
| F(NCODE . NE. 0) GOTO 900

C

C STATEMENTS TO FI LL TI MENOM NAL

C
| VARI D = NCVI D(NCI D, ' ti meNoni nal *, NOCDE)
CALL NCVI NQ(NCI D, | VARI D, CDUMWY, NTP, N\VDI M NVDI VS, NVS, NCCDE)
LENSTR=1

C

DO 70 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE

Al-20

Table 4.2.4.1-2, cont.

70

OO0

80

OO0

90

100

| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, t i meNoni nal , NOCDE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL REPORT TYPE

I VARID = NCVI D(NCI D, ' report Type ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 80 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGTC(NCI D, | VAR D, | START, | CNT, r epor t Type, LENSTR, NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL AUTQVATED STATI ON TYPE

I VARID = NCVI D(NCI D, ' aut oSt ati onType ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 90 J=1, NVDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGIC(NCI D, | VARI D, | START, | CNT, aut oSt ati onType,

LENSTR, NCCDE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL SKY COVER

| VAR D = NOVI D(NCI D, ' skyCover ", NCODE)
CALL NCVI NQ(NCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI VB, NVS, NCCDE)
LENSTR=1

DO 100 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGTC(NCI D, | VARI D, | START, | CNT, skyCover , LENSTR, NCCDE)

Al-21

Table 4.2.4.1-2, cont.

OO0

110

OO0

120

OO0

130

OO0

| F(NCODE . NE. 0) GOTO 900
STATEMENTS TO FI LL SKY COVER LAYER BASE

I VARI D = NCVI D(NCI D, ' skyLayer Base ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 110 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | ONT, skyLayer Base, NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FILL VI SIBILITY

VAR D = NOVID(NCI D, ' visibility ", NCCDE)
CALL NCVI NQ(NCI D, | VAR D, CDUMWY, NTP, N\VDI M NVDI M5, NVS, ncode)
LENSTR=1

DO 120 J=1, \VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, vi si bi | i t'y, NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL PRESENT WEATHER

| VARI D = NCVI D(NCI D, ' presWeat her ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 130 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE

| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGTC(NCI D, | VAR D, | START, | ONT, pr es\iat her , LENSTR, NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL SEA LEVEL PRESSURE

I VARI D = NCVI D(NCI D, ' sealLevel Press ', NCCDE)
CALL NCVI NQUNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)

Al-22

Table 4.2.4.1-2, cont.

140

OO0

150

OO0

160

OO0

LENSTR=1

DO 140 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, sealLevel Press, NCODE)
| F(NCCDE . NE. 0) GOrO 900

STATEMENTS TO FI LL TEMPERATURE

I VARID = NCVID(NCI D, ' t enper at ure ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 150 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, t enper at ur e, NCCDE)
| F(NCCDE . NE. 0) GOroO 900

STATEMENTS TO FILL TEMP FROM TENTHS COF A DEGREE C

I VARID = NCVI D(NCI D, ' t enpFr onfTent hs ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 160 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VAR D, | START, | CNT, t enpFr onTent hs, NCCODE)
| F(NCCDE . NE. 0) GOrO 900

STATEMENTS TO FI LL DEWPQ NT

| VARI D = NCVI D(NCI D, ' dewpoi nt ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 170 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1

Al-23

Table 4.2.4.1-2, cont.

170
C

OO0

180

OO0

190

OO0

200

| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, dewpoi nt , NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL DEWPAO NT FROM 10THS OF A DEGREE C

I VARI D = NCVI D(NCI D, ' dpFr onirent hs ', NCCDE)
CALL NCVI NQUNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 180 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, dpFr onfTent hs, NCODE)
| F(NCCDE . NE. 0) GOrO 900

STATEMENTS TO FILL WND DI RECTI ON

| VAR D = NCVI D(NCI D, ' wi ndDi r ", NCODE)
CALL NCVI NQ(NCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI VB, NVS, NCCDE)
LENSTR=1

DO 190 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, wi ndDi r, NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL W ND SPEED

| VARI D = NCVI D(NCI D, ' wi ndSpeed ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 200 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, wi ndSpeed, NCODE)
| F(NCODE . NE. 0) GOTO 900

Al-24

Table 4.2.4.1-2, cont.

210

OO0

220

OO0

230

OO0

STATEMENTS TO FILL WND QUST

| VAR D = NCVI D(NCI D, ' wi ndGust ", NCODE)
CALL NCVI NQ(NCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI VB, NVS, NCCDE)
LENSTR=1

DO 210 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, wi ndGust , NOCDE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FILL ALTI METER

IVARID = NCVID(NCI D, ' al ti net er ', NCCDE)
CALL NCVI NQ NCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 220 J=1, \VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, al t i met er , NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FILL M NI MJUM TEMP I N 24 HOURS

| VAR D = NCVI D(NCI D, ' ni nTenp24Hour ", NCODE)
CALL NCVI NQ(NCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI VB, NVS, NCODE)
LENSTR=1

DO 230 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | ONT, ni nTenp24Hour , NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL MAXI MUM TEMP | N 24 HOURS
| VAR D = NCVI D(NCI D, ' maxTenp24Hour ", NCODE)

CALL NCVI NQUNCI D, | VARI D, CDUMWY, NTP, NVDI M NVDI M5, NVS, NCODE)
LENSTR=1

Al-25

Table 4.2.4.1-2, cont.

240

OO0

250

OO0

260

OO0

270

DO 240 J=1, \VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | ONT, maxTenp24Hour , NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL PRECI P1IHOUR

I VARID = NCVI D(NCI D, ' preci plHour ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 250 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | ONT, pr eci p1Hour , NOCDE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FILL 3 HOUR PRECI P

I VARID = NCVI D(NCI D, ' preci p3Hour ', NCCDE)
CALL NCVI NQ NCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 260 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | CNT, pr eci p3Hour , NCCDE)
| F(NCCDE . NE. 0) GOrO 900

STATEMENTS TO FILL 6 HOUR PRECI P

I VARID = NCVI D(NCI D, ' preci p6Hour ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 270 J=1, \VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

Al-26

Table 4.2.4.1-2, cont.

C

OO0

280

OO0

290

OO0

300

CALL NCVGT(NCI D, | VARI D, | START, | CNT, pr eci p6Hour , NCCDE)
| F(NCCDE . NE. 0) GOrO 900

STATEMENTS TO FILL 24 HOUR PRECI P

I VARID = NCVI D(NCI D, ' preci p24Hour ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 280 J=1, \VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VARI D, | START, | ONT, pr eci p24Hour , NCODE)
| F(NCODE . NE. 0) GOTO 900

STATEMENTS TO FI LL PRESSURE CHANGE CHARACTER

I VARI D = NCVI D(NCI D, ' pr essChangeChar ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 290 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, I VARI D, | START, | CNT, pr essChangeChar , NCODE)
| F(NCCDE . NE. 0) GOrO 900

STATEMENTS TO FI LL PRESSURE CHANGE I N 3 HOURS

I VARI D = NCVI D(NCI D, ' pr essChange3Hour ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 300 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
CONTI NUE

CALL NCVGT(NCI D, | VAR D, | START, | CNT, pr essChange3Hour , NCODE)
| F(NCCDE . NE. 0) GOrO 900

STATEMENTS TO FI LL CORRECTI ON

Al-27

Table 4.2.4.1-2, cont.

I VARID = NCVID(NCI D, ' correction ', NCCDE)
CALL NCVI NQ NCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

DO 310 J=1, N\VDI M
CALL NCDI NQ(NCI D, N\VDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
310 CONTI NUE

C
CALL NCVGT(NCI D, I VARI D, | START, | CNT, cor r ect i on, NCCDE)
| F(NCCDE . NE. 0) GOrO 900

C

C STATEMENTS TO FI LL RAW METAR

C
I VARI D = NCVI D(NCI D, ' r awVETAR ', NCCDE)
CALL NCVI NQNCI D, | VARI D, CDUMWY, NTP, NvDI M NVDI M5, NVS, NCODE)
LENSTR=1

C

DO 320 J=1, N\VDI M
CALL NCDI NQ(NCI D, NVDI MS(J) , CDUMMY, NDSI ZE, NCODE)
LENSTR=LENSTR* NDS| ZE
| START(J) =1
| CNT(J) =NDSI ZE
320 CONTI NUE

C
CALL NCVGTC(NCI D, | VARI D, | START, | ONT, r awNETAR, LENSTR, NOCDE)
| F(NCODE . NE. 0) GOTO 900

C

C CHECKS OUTPUT CODE AGAI NST CURRENT | NPUT FI LE

C

CALL NCI NQ(NCI D, NDI M8, NVARSC, NGATTS, NRCDI M NCCDE)
| F(NVARSC. NE. NVARS) Rl TE(6, 340)
340 FORMAT(' NUMBER OF VARI ABLES HAS CHANGED)

C
900 CALL NCCLOS(NCI D, NCODE)
C

RETURN

END

Al-28

Table 4.2.4.1-2, cont.
APPENDI X 2

Sanpl e output from“test&idKeyServer” to list valid
values for AWPS grid APl s

Exhibit A2-1. Sanple output lines of “test&idKeyServer -v” to list valid val ues
for fieldlD

11 RH Rel Humidity % CONTOUR | MAGE
27 pV: Pot Vorticity K/ nb/1lebs CONTOUR | MAGE
35 ageoW Ageo Wnd kts BARB ARROWN

In each of the above three lines, the italicized portionis the “fieldld”
value of interest; the next part (inmmediately after the colon) of the line is
a nore spelled-out description of the variable, and the next field is the
units of the variable. |Ignore the remainder of the line.

Exhi bit A2-2. Sanple output lines of “test&idKeyServer -p” to list valid val ues
for planelDD.

12 400MB STANDARD: 400.0 MB offset:-14

49 TROP STANDARD: 0.0 TRCP

55 1000MB- 850MB COMPCSI TE: 1000. 0 MB 850.0 MB (1000MB 850MVB)
66 12kft STANDARD: 3658.0 FH

128 350K STANDARD: 350.0 K offset:-233

In each of the above five lines, the italicized portionis the “fieldld” value
of interest. |Ignore the remai nder of the line.

Exhi bit A2-3. Sanple output lines of “test&idKeyServer -s” to list valid val ues
for sourcelD and grid_source.

1 RUC RUC
/ dat a/ f xa/ Gi d/ SBN net CDF/ CONUS211/ RUC
Ruc211 rucdip 385 RUC 7556 1 2 3 4

9 avnNH AVN
/ dat a/ f xa/ Gi d/ SBN net CDF/ NHEM201/ AVN
Avn201 grid201 -1 grid201 65 65 O

14 NGWR13 NGM
/ dat a/ f xa/ &i d/ SBN net CDF/ CONUS213/ NGM
NgnR13 grid213 -1 grid213 129 85 1

The output for each valid value of “sourceld” and “grid_source” consists of

three lines. 1In each of the above three entries, the italicized portion is
the “sourceld” or “grid_source” value of interest. Ignore the renai nder of
each entry.

A2-1

Appendi x 3
Sunmary of applicabl e data subdirectories by WSR-88D product type

Radar data subdirectories are determ ned by assenbling all possible

permut ations of product type, elevation, resolution, and data | evel nanes (the
last 3, as applicable). For instance, for Conposite Reflectivity (CZ), the
possi bl e data subdirectories are:

~/ CZ/ | ayer0/resl/ | evel 16
Coe e ~/ CZ/ | ayer0/resl/ | evel 8
~/ CZ/ | ayer 0/ res4/ | evel 16
~/ CZ/ | ayer O/ res4/ | evel 8

See Section 4.2.4.1 for the higher-level radar directory structure.

AAP: No subdirectories

AM No subdirectories

APR El evati on(s): | ayerl
Resol ution(s): res4
Data Level (s): | evel 8
CFC El evati on(s): | ayer 0
Resol ution(s): resl
Data Level (s): | evel 8
cMm El evati on(s): | ayer 0
Resol ution(s): res0
Data Level (s): | evel 16
Cs: No subdirectories

CSC. No subdirectories

CSCT: No subdirectories

CST: No subdirectories

CzZ: El evati on(s): | ayer 0

Resol ution(s): resl res4

Data Level (s): level 16 |evel 8
czc El evati on(s): | ayer 0

Resol ution(s): resl res4

No Data Level s subdirectory

DHS: El evati on(s): | ayer 0
Resol ution(s): resl
Data Level (s): | evel 256

DPA El evati on(s): | ayer 0
Resol ution(s): res4
Data Level (s): | evel 256

DSTP: El evation(s): | ayer 0

A3-1

ETC.

FT™M

HDP:

H :

H T:

HSR

LRA:

LRM

CHPT:

PRR:

SCs:

SPD:

Resol ution(s):
Data Level (s):

El evati on(s):

Resol ution(s):
Data Level (s):
No subdirectori
No subdirectori
No subdirectori
El evati on(s):

Resol ution(s):
Data Level (s):
No subdirectori
No subdirectori
El evati on(s):

Resol ution(s):
Data Level (s):
El evati on(s):

Resol ution(s):
Data Level (s):
El evati on(s):

Resol ution(s):
Data Level (s):
No subdirectori
No subdirectori
El evati on(s):

Resol ution(s):
Data Level (s):
No subdirectori
No subdirectori
No subdirectori
El evati on(s):

Resol ution(s):
Data Level (s):
El evati on(s):

Resol ution(s):
Data Level (s):
El evati on(s):

Resol ution(s):
Data Level (s):

es

es

es

es

es

es

es

es

es

es

res2
| evel 256

| ayer 0
res4
| evel 16

| ayer 0
res4
| evel 256

| ayer 0
resl
| evel 16

| ayerl
res4
| evel 8

layer2 |ayer3

| ayerl
res4
| evel 8

layer2 |ayer3

| ayer 0
res2
| evel 16

| ayer 0
resl
| evel 16

| ayer 0
res0 5
|l evel 8

| ayer 0
res40
| evel 8

A3-2

SRM

SRR

SS.

STl

STIT:

STP:

STPT:

SW

SWP:

SR

SWE:

SW:

SWV

El evati on(s):

Resol ution(s):
Data Level (s):

El evati on(s):

Resol ution(s):
Data Level (s):

No subdirectories
No subdirectories
No subdirectories
El evati on(s):
Resol ution(s):
Data Level (s):

No subdirectories

El evati on(s):

Resol ution(s):
Data Level (s):

No subdirectories

El evati on(s):

Resol ution(s):
Data Level (s):

El evati on(s):

Resol ution(s):
Data Level (s):

El evati on(s):

Resol ution(s):
Data Level (s):

El evati on(s):

elev0_ 5
el eve_0
elev3d 4
el evl6 7
resl

|l evel 16

elev0_ 5
el eve_0
elev3d 4
el evl6 7
res0 5

|l evel 16

| ayer 0
res2
| evel 16

elev0_ 5
el eve_0
elev3d 4
el evl6 7
res0_25
|l evel 8

elev0_ 5
el eve_0
elev3d 4
el evl6 7
resl

|l evel 16

elev0_ 5
el eve_0
elev3d 4
el evl6 7
res0 5

|l evel 16

elev0_ 5
el eve_0
elev3d 4
el evl6 7
res0_25
|l evel 16

elev0_ 5
el eve_0

elevld O
el ev8_7
elevd 5
elev2 4

elevld 0O
el ev8_ 7
elevd 5
elev2 4

elevld O
el ev8_ 7
elevd 5
elev2 4
resO0_5

elevld O
el ev8_ 7
elevd 5
elev2 4

elevld O
el ev8_ 7
elevd 5
elev2 4

elevld O
el ev8_ 7
elevd 5
elev2 4

elevld O
el ev8_ 7

A3-3

el evl9 5
el evl0_ 0
el ev6_2
elev3 5

el evl9 5
el evl0_ 0
el evb_2
elev3d 5

el evl9 5
el evl0_ 0
el evb_2
elev3 5
resil

el evl9 5
el evl0_ 0
el evb_2
elev3 5

el evl9 5
el evl0_ 0
el evb_2
elev3 5

el evl9 5
el evl0_ 0
el ev6_2
elev3 5

el evl9 5
el evl0_ 0

elev2 5
elevld 6
elev9 9
el evb_3

elev2 5
elevld 6
elev9 9
el evb_3

elev2 5
elevld 6
elev9 9
el evb_3

elev2 5
elevld 6
elev9 9
el evb_3

elev2 5
elevld 6
elev9 9
el evb_3

elev2 5
elevld 6
elev9d 9
el evb_3

elev2 5
elevld 6

el evd_3
elevl 5
elevl2 0
elev7_5

el evd_3
elevl 5
elevl2 0
elev7_5

el evd_3
elevl 5
elevl2 0
elev7_5

el evd_3
elevl 5
elevl2 0
elev7_5

el evd_3
elevl 5
elevl2 0
elev7_5

el evd_3
elevl 5
elevl2 0
elev7_5

el evd_3
elevl 5

elev3 4 elevd 5 elev6 2 elev9 9 elevl2 0
elevle 7 elev2 4 elev3 5 elev5 3 elev7 5

Resol ution(s): res0_25
Data Level (s): | evel 8
THP: El evati on(s): | ayer 0
Resol ution(s): res2
Data Level (s): | evel 16

THPT: No subdirectories

TVS: No subdirectories

TVST: No subdirectories

UAM No subdirectories

USRA: El evation(s): | ayer 0
Resol ution(s): res2
Data Level (s): | evel 16
V: El evati on(s): elev0 5 elevld 0 elevl9 5 elev2 5 elevd 3

elev6_ 0 elev8 7 elevl0 0O elevl4d 6 elevl 5
elev3 4 elevd 5 elev6 2 elev9 9 elevl2 0
elevle 7 elev2 4 elev3 5 elev5 3 elev7 5
Resol ution(s): res0_ 25 res0_5 resl
Data Level (s): | evel 16 | evel 8

VAD: No subdirectories

VADT: No subdirectories

VCS: Elevation(s): | ayer 0
Resol ution(s): res0_5
Data Level (s): | evel 16

VI L: El evati on(s): | ayer 0
Resol ution(s): res4
Data Level (s): | evel 16

VWP: No subdirectories

VER: El evati on(s): | ayer 0
Resol ution(s): resl
Data Level (s): | evel 8
XSR: El evati on(s): | ayer 0
Resol ution(s): resl
Data Level (s): | evel 8
XSV: El evati on(s): | ayer 0
Resol ution(s): res0_5
Data Level (s): | evel 8
Z: El evati on(s): elev0 5 elevld 0 elevl9 5 elev2 5 elevd 3

elev6_ 0 elev8 7 elevl0 O elevl4d 6 elevl 5
elev3 4 elevd 5 elev6 2 elevd 9 elevl2 0
elevle 7 elev2 4 elev3 5 elev5 3 elev7 5

A3-4

Resol ution(s): res0_ 25 res0_5 resl
Data Level (s): | evel 16 | evel 8

A3-5

Appendi x 4

Ext ernal Docunentation Standards for
Local | y- Devel oped AW PS Applicati ons

The detail ed requirenent for external docunentation are provided in the
followi ng sections.

1.0
1.1

13)

1.3

Local Application Registration Infornation

Appl i cation Description

Nane. List the application nane(s).

Version Nunber. List the |atest version nunber of the software
(e.g., XNOW2.0).

Version Date. List the date that the software was | ast updated

Type. Indicate the type of application (e.g., display, fornatter
CRS, LDAD preprocessor, etc.).

Description. Provide a detailed functional description of the
application and describe its operational use.

Lanquages. List the programm ng | anguages used in the application
(e.g., FORTRAN 77, C, C++, Perl, netCDF Perl, Tcl/Tk, python

Perl/Tk). If there is a mx, each |anguage and interpreter should be
speci fi ed.
Status. Indicate the current status (e.g., Planned, Under

Devel opnent, or Qperational).

Ref er ences

Oiginator. List the original developer (last nane, first name) of
application(s).

Qiginating Office: List the office (e.g., AVA, ERH).

Mai nt enance Progranmer. List naintenance programrer (last nane,
first nane) assigned to this application

Docunentation. List the docunentation available for this application
(e.g., User, Installation, Miintenance). List any web site where
nore information is provided.

Software | nventory

New Software Added. List the nanme and |ocation of all new files
added. Include which machine(s) (e.g., DS1,ASl) and full path nane.

A4-1

1.4

1.5

COrs/ Sharewar e/ Freeware. List any COTS, shareware, or freeware
packages required for this application to build or run. Include
version and patch | evel infornation.

Existing Files Changed/Deleted. List any existing file on the system
that needs to be nodified. [Include which nachine(s) (e.g., DS1, ASl)
and full path nane of all files. This should cover all changes
whether to AWPS software or otherw se such as standard Unix files.
For any core systemfiles (e.g., /etc/services, cron, allow, any
Inform x setup or paraneter files, any operating system paraneter
files), explicitly describe what changes are bei ng nade.

New Data Files. List all new data directories and data files that
are specific to this application. Indicate file fornat, tenporary or
permanent, and si ze.

New Dat abases/ Tables. List any new I nform x database tables created
by this application. Include the Inform x dbspace, database nane and
tabl e nane.

Data Fi | e/ Dat abase I nterfaces.

AWPS Systeni HydroMet Data Files. Identify any existing data files
accessed by the application. Include the data type (e.g., Gids,
Satellite, METARs, RAGBs), file format (e.g., netCDF, native,
plotfile), and how often they are being accessed.

AWPS Text Database Products. Identify any Text Database products
accessed by this application. Include the AWPS PIL of the product,
in cccNNN\Nxxx format, and how often it is being accessed.

AWPS RDBMB. Identify any Inform x database tables accessed by this
application. Include the Inform x dbspace, database nane and tabl e,
and how often it is being accessed.

External /I nternal Interfaces.

Identify any AWPS external or internal interfaces this itemw || access
(e.g., NWAB, NWR, ASCS, LDAD) and how often it will interface.

Runtinme Signature

a.

Host Machine. Identify the host(s) on which najor processes of the
properly-configured programrun. Does not include NFS access of data
files residing on another machine's disks, or export of displayed
output to another machine's nonitor. For transient processes,

descri be when (how often, what tines of day) they becone active.

CPU. Characterize in general terns how nuch CPU or nenory the
application is expected to use while running. The approxi mate
running times (CPU tinme and Cock tine) in whol e seconds, when (if
allowed by the application) run at the sanme tinme that normal AW PS
processes are running on the host nachine(s). This applies to najor
subprocesses of primarily-interactive applications, not to the user
interactions with the interface. See Appendix 6 of the AIFM for
useful tools to evaluate the inpact of a programon the system

A4-2

1.7

2.0

3.0

C.

D sk Usage. ldentify the total disk space required for this
application. Provide a separate total for executables, all
application specific data files and application-specific RDBVMB usage.
It may be necessary to estimate requirenents for data file space.
The estinmate should reflect a probable upper limt.

Net wor k/ Communi cations. Describe any usage of the AWPS WAN. |n
particular, describe howit is accessed (i.e., which APIs).
Characterize the data fl ow over the WAN because of the application(s)
(i.e. how nmuch data, how often, what tines of the day for peak
transm ssion rates, etc.). Describe any usage of the AWPS SBN

That is, note whether the application puts data on the WAN for

di stribution over the SBN. Characterize the data fl ow over the SBN
because of the application(s).

QO her Performance/ Syst em Resour ce Usage

a.

Performance. Assess usage of the Network File System (NFS) and
Informx (e.g., triggers or otherwise). |f known, describe any extra
| oad being put on shared services (e.g., notificationServer,

text NotificationServer, oninit, AsyncProductSchedul er, NW\SSchedul er,
MHSserver). List anticipated issues with algorithmc performance for
heavy nunber-crunching functions. Describe anticipated use of renote
shell, rcp, or other such systemcalls.

System Resource. Identify any anticipated use of Omi back/tape
drive. ldentify potential problenatic use of special hardware
resources (e.g., async nux ports, LDAD term nal server ports,
nodens) .

User |nformation

a.

Confiquration. Provide instructions (if needed) for configuring the
application for local use.

Execution. Provide instructions for running the application and for
recovering fromerrors.

Mai nt enance. Provide instructions for maintaining (e.g., purge,
cl ean-up) the data sets created and used by the application.

Installation Information

Tar File Information. List all tar files containing the programs
source code and data files. The suggested format of this listing is
extracted fromthe columar format produced by the HP-UX |'s comand

Makefiles. Describe all makefiles associated with building the
program their locations in the source tree, their interdependencies,
and order of execution. Note that if nakefiles are not provided with
t he package (an undesirable option), then this section nust include a
full set of the conpile and |link comrand |ines needed to build the
program including references to libraries (AWPS and/or standard).
The use of nmekefiles is strongly reconmended.

A4-3

Application Environnment. Docunent the types and versions of the
operating system conpilers, and other COIS (Comercial, Of-The-
Shel f) packages under which the executable code is built and run. It
includes the operating systemand version (e.g., HP-UX 10.20)
conpiler/interpreter and version (e.g., HP FORTRAN 9000 version 9.0),
and list the nanes and definitions of all environment variables that
need to be set for the application to be built and run. Only include
those that are in addition to the AWPS system envi ronnent vari abl es
required to be defined for AWPS libraries or resources that are used
by the application. |Include the full name of the environnent

vari able, the value of the environment variable, and indicate

whet her the variable is needed for runtine (R) or for setup/creation
of the program (S), or both (R'S)

Detailed Installation Procedures. Describe all the steps involved in
setting up the environnent, configuring the system building the
application, installing the executables, and, as needed, file
deconpression, relationships to other prograns, creating and
initializing the data files, creation and | oading of RDBVS tabl es,
setting up cron jobs and scripts, and directions on running scripts
to automatically performany of the above.

Installation Scripts. Provide an inventory of any scripts that have
been devel oped to automate the process of setting up the program
build and runtine environnents, and building and installing the
program It includes the absolute pathnanme for the single directory
whi ch contains the script files and a file listing of script files
needed by the program The suggested format for this listing is
extracted fromthe columar format produced by the HP-UX |I's command.

4.0 Mai nt enance | nfornation

The followi ng information should be avail able to a nai ntenance programmer.

a.

Design information. A figure to illustrate the rel ationship anong,
as applicable, the disk files (data files, control files, and static
data), the Rel ational Data Base Managenent System (RDBMB), the
progran(s) or nmjor processes, and the output data product(s) and/or
the display (e.g., Data Flow Diagran). Sumarize the flow of the
programand the data in clear, sinple statenents that describe how
the programworks. Discuss any scientific fornmulas and nat henmatica
algorithms to show the scientific foundati on of the program For C++
prograns, provide a class diagram which shows categories, classes,
attri butes, nmethods, and relationships in a standard notati on such as
Booch- 93.

Testing information. Information on the testing performed on the
application. This includes test procedures and test data that can
sinplify future regression testing.

Application history. Listing of enhancenments (versions) and known
sof tware deficiencies for the current version

A suggested format and content for a nmintenance docunent is provided in
Appendi x 7. This format is an adaptation of those standards used in the AFCS
Conput er Program (CP) series.

A4-4

Appendi x 5

man pages for handl eQUP. pl and distributeProduct CLIs

A5-1

Handling O Oficial User Products (QOUPs)

Nane
handl eQUP. pl

Synopsi s
handl eQUP.pl [-W [-n][-r] <AWPS | D> <product _pat hnanme>

Opti ons
[-wW] specifies the WMD speci al nessage type
[-n] selects test node as the AWPS operational node
[-r] specifies the routing on the AFCS network when AWPS is in pre-
comm ssioned or test node

Argunent s
<AW PS_| D> ful |l CCCONNNXXX AW PS Product Identifier
<pr oduct _pat hnane> relative or absolute path and filename of the text file
containing the Oficial User Product
Description

handl eOUP. pl autonatically perforns certain tasks associated with the handling
of an Oficial User Product, including local storage into the Inform x fxatext
dat abase, product archival, distribution across the AWPS WAN to the Network
Control Facility (NCF) and to NOAA Wather Wre Service (NWAS) uplink sites,
and distribution to the local AFCS interface when AWPS is in pre-conm ssioned
node.

Product distribution on the AWPS comuni cati ons systemis acconplished by
submitting a nessage request to the x.400 | SOCOR Message Handling System
handl eOUP. pl uses the distributeProduct comrand line interface to create a

x. 400 message encl osi ng the <product pathnane> as an attachnent.

di stri but eProduct uses the <AWPS | D> passed from handl eQUP.pl to create the
nmessage header which nust precede the contents of a product in accordance
with SRSI H 3 requirenents for product dissem nation on the AWPS WAN. The
nmessage is subnmitted at a priority level associated with the category of the
product, which is derived fromthe <AWPS ID> (a table |ookup into

/awi ps/fxal/data/ awi psPriorities.txt is perforned using the category as a key).

handl eOQUP. pl supports two operational node for AWPS: comm ssioned and pre-
comm ssioned. The conm ssioned node or status of an AWPS site is set in the
configuration file /data/fxal/workFil es/wanMsgHandl i ng/ si t eConmmi ssion. t xt.
Based on the value for the conm ssioned status, the product is distributed
across the AWPS WAN either with a test WMO header (ii=97 in TTAAIi) or a
valid WMO header. GCeneration of test WVO headers nmay al so be acconplished by
selecting the -mcommand |ine option -- effectively downgrading the
operational status of an AWPS site from conmm ssioned to test node. |n either
AW PS pre-conmi ssi oned or test node, products are transmitted to AFOS with a
proper nessage header. For this reason, the <product_pathnanme> is assuned to
contain the contents of the QUP only, w thout a communications header.

Upon successful dissemnation to either the NCF, to the predesignated prinary
and backup NWAS uplink sites (specified in the configuration file

[awi ps/ ops/ dat a/ mhs/ nwwsup_dl i st.data), or to AFCS during AWPS pre-

conmmi ssi oni ng phase, a copy of <product_pathname> is stored in a predesignated

A5-2

hol ding directory for archival (/data/fxalarchivel/ QUP/ scratch). 1 The pr oduct
is archived and stored with the AWPS WAN nessage header.

If AWPS is in test or in pre-conm ssioned node, handl eOUP. pl uses the
AFCS routing _node to generate the following 2 |ine AFCS product header:

OCCNNNXXX ADR
TTAA i COCC DDHHW BBB]

wher e:
CCCNNNXXX is the 7-9 character AFCS product identifier (PIL),
ADR is the 3 character AFCS routing node,
TTAAI i is the WWO header,
CCCCis the 4 letter originating office identifier,
DDHHW is the date/time stanp (UTC fornmat), and
BBB is the (optional) WVO speci al nmessage type.

If AWPS is in comm ssioned node, handl eQUP. pl generates the AWPS product
header :

TTAA i COCC DDHHW| BBB]
NNNXXX

wher e:
TTAAI i CCCC DDHHW BBB] is the WMD Abbrevi ated Heading, with el ements as
defined above
NNNXXX is the subset of the AWPS Identifier COCCNNNXXX, and is generally
the same as the subset of the CCONNNXXX AFCS nessage header field, as
above.

handl eOUP. pl uses the /aw ps/fxal/data/afos2aw ps.txt configuration file to
conpl ete the nessage header: fromthis file and fromthe <AWPS | D>,

handl eQUP. pl obtai ns the equival ent AFCS product identifier (PIL), and the WO
header TTAAIi and originating WFO identifier fields. The WO header DDHHVM
day/tine field is based on the systemclock tine at the ti me when handl eQUP. pl
generates the tine string, and is given to the current mnute. DDHHW cannot
be specified or overridden by the user or calling program The generated
nessage header is subsequently prepended to a copy of the product.

Opti ons:
[-w WMO_speci al _nessage_t ype]
Speci fy the WMO nessage type. Supported types include:
AVD, COR, RTD, SUP, SPL; and AAx, CCx, RRx, and Pxx where A < x < Z (See
di stri but eProduct)

Specify test node. Selecting this option results in the distribution of a
product across the AWPS WAN with a test WMO header as well as to AFCS with
an AFCS-standard nessage header. Anendnents are nade to a copy of the
product .

If the -moption is not selected, the site’'s comm ssioned status (obtained
from /dat a/ f xa/ wor kFi | es/ wanMsgHandl i ng/ si t eConmi ssion.txt) is used to

1 The /data/fxal archi ve/ OUP/ scrat ch direct ory is nonitored hourly; at the end
of which interval, all stored products are noved to the
/ dat a/ f xa/ ar chi ve/ QUP/ ar chi ve directory.

A5-3

det erm ne whether the product is sent with an AFCS product header to AFCS
and/or to the AWPS WAN with a “test” AWPS product header.

[-r AFCS_routing_node]
Specify the three character AFCS receiving site. Exanples of AFCS nodes
i ncl ude:
LCC, DEF, CEN, CES, CSW EAS, SQU, WES, ALL

Def aul t: DEF

If this option is not selected, the default value of DEF is assigned as the
routing address. The DEF value instructs AFOCS to search its default
addressing configuration table for the given AFCS product identifier and
obtain the intended recipient(s). |If the product is not found in the

tabl e, AFCS sends the product to ALL sites on the AFCS network.

Requi red Argunents:

<AW PS_| D>
The 8-10 character AWPS identifier of the form COCCNNNXXX, where:

CCCCis the International Gvil Aviation Oganization (ICAO -approved
identifier of the office originating the product,

NNN i s the 3 character product category,

XXX is the 1-3 character product designator

The NNNXXX is (generally) identical to the AFCS NNNXXX

<pr oduct _pat hnane>
The fully qualified product filename. The file is assuned to contain only
the contents of the product, w thout a comunicati ons header.

Ret urn Val ues

handl eOUP. pl returns the follow ng error codes:
0 = successful
1 =error

Specifically, a successful return indicates that the product was successfully
distributed to any one receiving site, was archived, and was stored in the

f xat ext database. An unsuccessful return indicates that either one or nore
handl i ng tasks failed to be conpl et ed.

Log File
If handl eOUP. pl is invoked fromthe as or ds, the log file resides in the
foll owi ng date-naned directory:

/ dat a/ | ogs/ f xa/ <YYMvVDD>

If handl eOUP. pl is invoked fromthe workstation, the log file resides in the
dat e- naned directory:

/ dat a/ | ogs/ f xa/ di spl ay/ <DI SPLAY>/ <YYMVDD>
where DI SPLAY is val ue specified by the D SPLAY environment variable. (If the

DI SPLAY variable is not set, alog file is created in the date subdirectory in
/dat a/ | ogs/ fxal/ di spl ay/:0.)

A5-4

The name of the handleQUP.pl log file is handl eOUP_<pi d> where <pid> is the
process id nunber

The log file traces all OUP-related activities, fromtable | ookups for nessage
header generation and nessage conposition for product distribution on the
AWPS WAN via the distributeProduct command line interface and to AFCS via the
sendafos comand line interface, to product storage and archival. This |og
file may be viewed in conjunction with the distributeProduct log file for

conpl ete traceback. The distributeProduct log file is stored in the sane
directory by the foll ow ng nane:

di stri but ePr oduct <pi d><host ><HHWES>

Ref er ences
See al so distributeProduct docunentation

A5-5

Product Distribution Across the WAN

di stri but eProduct

Synopsi s
di stri but eProduct [options] <aw ps_i d> <product _pat hnane>

where options include the fol | ow ng:

[-c action, [,action]...]
[-s subject]
[-a addressee [, addressee]...]
[-p priority]
[-t nmessage_type]
[-e enclosepath, [,enclosepath]...]
[-w wro_speci al _nessage_t ype]
[-n
Descri ption

di stri buteProduct creates a product nessage and submits it for
di stribution across the AWPS WAN to the addressed sites. The subnitted
product in <product_pat hnane> should contain the contents of the NWS product
only, without any conmunications header

Prior to distribution, distributeProduct prepares the product by creating the
WAN communi cati ons header and prepending the header to a tenporary copy of the
product. distributeProduct assunes that each line of the text product is
delimted by a single, end-of-line character (either <CR> or <LF>)

di stributeProduct reformats the transmtted version of the product such that
each line of the text product is termnated with the <CR><CR><LF> character
conbi nation, as required by the NWBTG The WAN communi cati ons header i ncl udes
either the AFCS Product Header (in non-comm ssioned node) or the test or
operational AWPS Product Header (conm ssioned node). Refer to docunentation
of handl eQUP. pl for header descriptions and rules.

Distribution requests, enclosing the tenporary copy of the product, are
subsequently nade to the x.400 Message Handling System (MHS) through the
nsg_send utility program Wen distributeProduct is executed, a product
nmessage is subnmitted to the x.400 MHS. Upon successful subm ssion, MS
generates a uni que nmessage | D which distributeProduct prints to the standard
output STDOUT (as well as to its log file). The fornmat of the nessage IDis
the foll ow ng:

<sendi ng_si te_| D>- <sequence_ #> (ex: TOP-23410)

The nessage | D proves useful fromtwo perspectives: the sender may use the
nmessage ID to trace receipt of the distribution request to MAS via the | og
file /aw ps/ops/logs/<site>/ nsgreq_svr.log; the recipient nay use the nmessage
ID recorded in /awi ps/ops/logs/<site>/ nsgrcv_svr.log to readily identify the
source of the nessage and the directory where the nessage is placed. Received
products are not stored by the sender-assi gned nane; received products are
stored as attachments to x.400 nessages under the fil enane:

<sendi ng_si te_| D>- <sequence_#>. 001

A5-6

(x. 400 nessages are stored as docunents by the sane nane using a .doc
extension in place of .00l extension, and for the sake of clarity, x.400
docunents are not discussed). The difference in the product filename (sender-
assigned vs. received) is transparent to the receive handling application

Opti ons:
[-c action_list]
Specify action(s) which the receiving site is to take upon
receiving the product. Current action keywords include the
foll owi ng:
TEST_ECHO
AFCS_STORE_TEXTDB
AW PS_STORE_TEXTDB
NWAS_UPLI NK
Rl VPROD_CRS

Mil tiple actions may be specified in a comma-delimted |ist

wi thout intervening spaces. The action is natched agai nst code
nunbers derived fromthe nessage receive table to determne the
appropriate handling routine at the receiving site.

Default action: MHS default (code 0) -- nmessage is stored in the
default receive queue directory (/datal/x400/ nsg/inbox/<nsg_type>),
where <nmsg_type> is one of: ack, admn, nack, other, retrans
routine, or test, as appropriate for that nessage type. The
nmessage i s subsequently | ogged

[-s subject]
Speci fy the subject of the message. The subject is an ASC I
character string with a nmaxi mumlength of 40 characters. The
subj ect nust be enclosed in quotes if it includes spaces or tabs.
(See Action Keywords, below, for special usage of subject option
argunent .)

[-a address_list]
Specify list of non-acknow edgi ng reci pi ents of the product
message. Miltiple recipients are specified through a comma-
delimted list using either the AWPS site identifier and/or
speci al address keywords. Address keywords include the follow ng:
DEFAULT
DEFAULTNCF
NVWASUP

Def aul t addressee: DEFAULT

The file /awi ps/ops/data/mhs/allsites.data contains the |ist of
valid AWPS site identifiers.

[-p priority]
Specify the priority of the message. Supported values are 0, 1
and 2, with level 2 representing the highest priority.

Default priority: O

[-t nmessage_type]
Specify the type of nessage. Supported nessage types include the
foll owi ng:
Rout i ne
Suppl enent

A5-7

Anendnent
Correction

St at us

Test

Ti m ng

Comrand

I nhi bi t

d ear

“War ni ng Recei ved”
Speci al

Adm ni strative
“Routine Transm ssi on Del ayed”
“File Transfer”

The entire nane nust be specified. |f the name of the type has
mul tiple words, the name nust be enclosed in quotes, as shown
above.

Default type: Routine

Note: nsg_send provi des acknow edgrment nessage types which are not
supported by distributeProduct for Build 4.2. These types are
omtted fromthe above |ist.

[-e encl osure_pat hname_|ist]
Speci fy encl osure pathnane(s). The path to the enclosure file nay
be relative or absolute. Enclosure files or attachments may be
either text or binary.

[-w wro_speci al _nessage_t ype]

Speci fy the WMO nessage type, which becormes the bbb field in the
Abbr evi at ed WMO Header prepended to the product. Supported types
include the follow ng:

ANMD

COR

RTD

SUP (not WMD st andard--supports ASCS and m cr oART)

SPL (not WMD st andard--supports ASCS and m cr oART)

and the non-WMO, version-stanped variations used by the NWE:
AAx (arended), CCx (corrected), RRx (delayed) and Pxx

where x is the letter Athrough Z, used sequentially to indicate
subsequent use of the sane header.

Specify test or AWPS pre-conmm ssioned operational node. This
option generates a test WVO header which is then prepended to a
copy of the product. |[If not specified, distributeProduct uses a
site’'s comm ssioning status to determ ne whether a test WMO header
wi Il be generated.

Requi red Argunents:

<aw ps_i d>
Specify the AWPS identifier (CCCONNNXXX) for the product. The
AWPS identifier is used to conpose the WAN comuni cati ons header.

A5-8

<pr oduct _pat hnane>
Specify the absolute or relative pathnanme of the product.

Addr ess Keywor ds

Action

Return

DEFAULT
Speci fies adjacent sites as addressees based on the product’s WD
id. Default specification is site configurable.

DEFAULTNCF
Specifies the Network Control Facility (NCF) as the addressee. At
the NCF, the product nmay be further routed over the SBN, over the
NWAB up-link, to the NWBTG etc., according to its default, table-
driven specification at the NCF.

NVWASUP
Specifies a site’'s primary and backup NWAS up-link sites as
addressees. The file /aw ps/ops/datal/nmhs/ nwwsup_dlist.data is
site-configurable, and specifies the prinmary and backup NW\S
uplink sites for a local WO

Keywor ds

TEST_ECHO
Echoes “Code 1", the message id, the nessage subject, the product
pat hnane, and any encl osures to /tnp/nsg_| og.

AFCS_STORE_TEXTDB
Stores the product in the Inform x fxatext database, taking the
AFCS product identifier as the argument. The subject command |ine
option (-s) nmust be specified with the AFCS identifier as the
ar gunent .

AW PS_STORE_TEXTDB
Stores the product in the Inform x fxatext database, taking the
AW PS product identifier as the argunment. The subject command
line option (-s) nust be specified with the AWPS identifier as
the argunent. The corresponding AFCS PIL is determined fromthe
[awi ps/ f xa/ dat a/ af os2awi ps.txt file, and the product is stored
under the PIL.

NWAS_UPLI NK
Transmts the product over the NOAA Weather Wre Service satellite
up-link. The subject command |ine option (-s) nust be specified
with the AFCS identifier as the argunent.

Rl VPROD_CRS
Transmts RFC NVMR products to the honme and nei ghboring WFGs for
broadcast on transmtters that cover the area of responsibility
applicable to the product.

Val ues

di stributeProduct returns the followi ng error codes:
0 = successful
-1 =error

>0 = # fail ed nmessages

The nunber of actions approxi mately determi nes the nunber of nessages created
and submtted. In addition, distributeProduct |1ogs and prints to standard

out put

the error nmessages returned by nsg_send, which include the follow ng:

A5-9

1 Invalid nessage type.

2 Failed to create the nessage for sone reason.

3 Failed to add an addressee to the nessage.

4 Failed to add an encl osure to the nessage.

5 Failed to add the subject of the nmessage.

6 Failed to set the priority of the nessage.

7 Failed to add the body to the nessage.

8 Failed to submt the nessage.

9 Failed to assign a nmessage id to the nessage.
Exanpl es

The fol |l owi ng exanpl es denonstrate the use of distributeProduct. For
illustrative purposes, the exanples use the Topeka, KS WO as the |ocal
site fromwhich products are generated and distributed across the AWPS
WAN. Products are distributed in the formof nessages via the x.400

I socor Message Handling System (MHS). Wthin the communications
framework of MHS, the local site is known as the “sending site”; the
reci pient of a product nessage is known as the “receiving site”. Asite
is referenced by its site identifier. Table 1 contains the WO sites
and associated Site | Ds which are referenced in the exanpl es bel ow.

Table 1. WO sites Referenced in Exanpl es.

WO Site AWPS WO Site I D
Topeka, KS TOP
Pleasant HIIl, MO EAX
CGoodl and, KS GD
Springfield, MO SGF

Each exanpl e bel ow contains an Objective, a general and a specific instance of
the distributeProduct command |ine invocation, a sanple return nmessage from
IVHS, and a brief description highlighting the effect of the given invocation. 1
Example 1
hj ecti ve:

To send a product to nultiple WGCs

Ceneral Fornat:
di stributeProduct -a sitel, site2, ... <AWPS_ | D> <product_pat hnane>

Sanpl e Format :
di stri but eProduct -a EAX, GLD, SGF KTOPSWRKS / dat a/ f xa/ hwr / TOPSWRKS. dat

Sanpl e Return to STDQUT from MHS:
TOP- 23413

In the sanple fornat above, the -a option specifies a |list of non-
acknowl edgi ng recipients followed by the AWPS site identifiers; KTOPSWRKS is
the AWPS product identifier associated with the product contained in the file

1 As aw psusr, the forecast user does not need to specify the full pathnane
for distributeProduct; the path to the distributeProduct executable,
referenced by the $PATH environnent variable, includes the /aw ps/fxalbin
directory.

A5-10

[dat a/ f xa/ hwr/ TOPSWRKS. dat. The product is sent from Topeka to three WFO
sites: Pleasant Hll, MO (EAX), Goodland, KS (G.D), and Springfield, MO (SGF)
via x.400 MHS. At the receiving sites, the product is stored as an x. 400

encl osure file in /datal/x400/i nbox/other directory and | ogged under an MHS
generated fil enane, TOP-23413.001 (MHS executed its default action, since none
was specified).

Exanpl e 2
bj ecti ve:

To send a product to nultiple WWGs and store it in the respective
dat abases of the receiving sites

General Fornat:
distributeProduct -a sitel,site2,... -c AFOS_STORE TEXTDB -s <AFCS | D>
<AW PS_| D> <pr oduct _pat hnane>

Sanpl e For nat :
di stributeProduct -a G.D -c AFCS_STORE TEXTDB -s TOPVERGLD KTOPVERG.D
/ dat a/ f xa/ ver /| KTOPVERGLD. dat

Sanmpl e Return to STDQUT from MHS:
TOP- 23414

In the sanple format above, the product is sent fromthe Topeka, KS WO (TOP)
to the Goodl and, KS WO (G.D). At Goodl and, the product is stored as an x. 400
encl osure file in the /data/x400/ nmhs/ nmsg/rcvq directory under the MAS
generated fil enane TOP-23414.001, and is also stored in the GD text database.
(The /data/ x400/ mhs/ nsg/rcvqg directory is the storage directory for received
nmessages associated with the AFCS_STORE TEXTDB action.)

The recei ve handling specification associated with the acti on code
AFCS_STORE_TEXTDB requires that the AFOS product identifier be specified via
the -s option so that the product is stored under that identifier.

Exanpl e 3
oj ecti ve:
To send the product to the NCF

General Fornat:
di stri but eProduct -a DEFAULTNCF <AW PS_| D> <pr oduct _pat hnane>

Sanpl e For nat :
di stributeProduct -a DEFAULTNCF KTOPADMICP / dat a/ f xa/ adnmi TOPADMICP. dat

Sanmpl e Return to STDQUT from MHS:
TOP- 23415

In the sanple format above, the DEFAULTNCF address keyword is used to specify
the NCF as the product recipient. The product is forwarded to the NCF, stored
as an x.400 enclosure file in the /datal/x400/inbox/other directory under the
IVHS- generat ed fil ename TOP-23415.001 and | ogged. Code actions are not
applicable at the NCF. The NCF nmy choose to further route the product (to
SBN, NWBTG etc.) using the WMO id contained within the enclosure file to
performa tabl e-1ookup in the switching directory.

Exanpl e 4
oj ecti ve:

To transmt a product over the NWAS uplink

A5-11

CGeneral Fornat:
di stri buteProduct -a NWWUP -c¢ NWAS_UPLI NK -s <AFCS | D> <AWPS | D>
<pr oduct _pat hnane>

Sanpl e For nat :
di stri buteProduct -a NWAWUP -¢c NWAS_UPLI NK -s TOPADMIOP KTOPADMIOP
/ dat a/ f xa/ adnl TOPADMIOP. dat

Sanmpl e Return to STDQUT from MHS:
TOP- 23416

In the sanple format above, the NWABUP address keyword is used to specify the
local primary and backup NWAS uplink sites. MHS expands this keyword to the
site(s) designated in the /aw ps/ops/data/ mhs/ nmsup_dlist.data configuration
file. IMHS perforns a table | ookup for the code nunber associated with the
action keyword NWAS_UPLI NK (/aw ps/ ops/ data/ nmhs/rcv_handl er.thl).

At the receiving site(s), the product is stored as an x.400 encl osure file
under an MHS generated fil ename (TOP-23416.001) in the holding directory
desi gnated to receive products destined for the NW\S uplink
(/data/fxa/workFiles/ nws/rcvg). MS passes the AFCS product identifier
(TOPADMIOP) and encl osure fil enanme (TOP-23416.001), which are the required
argunents, to the AWPS NWAS i nterface.

Exanple 5

oj ecti ve:
To transmt a product over the NWAB uplink and also to store it in the
text database of the NWAS uplink sites

General Fornat:
di stri buteProduct -a NWAMUP -c NWAS_UPLI NK, AFCS _STORE _TEXTDB -s
<AFCS_| D> <AW PS_I D> <pr oduct _pat hnane>

Sanpl e For nat :
di stri buteProduct -a NWAMUP -c NWAS_UPLI NK, AFCS _STORE _TEXTDB -s
TOPADMIOP KTOPADMIOP / dat a/ f xa/ adnm TOPADMIOP. dat

Sanpl e Returns to STDQUT from MHS:
TOP- 23417
TOP- 23418

In the sanple format above, the NWABUP address keyword is used to specify the
local primary and backup NWAS uplink sites. MHS expands this keyword to the
site(s) designated in the /aw ps/ops/data/ mhs/ nmsup_dlist.data configuration
file. At the receiving site(s), the product is effectively stored as an x. 400
enclosure file in two holding directories, each associated with a different
action keyword. /data/fxa/workFiles/nwms/rcvg is associated with the
NWAE_UPLI NK keyword, where the MHS fil enanme TOP-23417.001 is used to store the
product. /data/x400/ nmhs/nsg/rcvq is associated with the AFOCS_STORE TEXTDB
keyword, where the MHS fil ename TOP-23418.001 is used to store the product.

VHS passes the AFCS product identifier and enclosure filename (required
argunents) to the AWPS NWAS interface as well as to the command |ine
interface, textdb, for text database storage.

Ref er ences

See handl eQUP. pl and textdb docunentation.

A5-12

Appendi x 6

Tools to Monitor Application Perfornmance and Resources

Once a local application has been devel oped, the devel oper nust ensure that
its execution does not consunme undue resources. The follow ng paragraphs
di scuss sone of the tools that all ow a devel oper to nonitor resource
utilization by an application. The process of optimzing an application so
that it consunes fewer resources is beyond the scope of this appendi x

1.0 Online Docunentation

Wher eas docunentation is not strictly a performance-nonitoring tool, we
discuss it first because it is the source of valuable information about such
tools

1.1 UNI X man pages

The first source of online docunentation or help is the UNX “nan” pages,
short for manual pages

To see a man page for a UNNX utility program type at the command |ine
man utility _nane

Thus to obtain detailed information about the vinstat utility, type at the UNI X
pronpt :

nman vnst at
1.2 COher Docunentation

The tools and utilities provided by HP that go beyond the nornmal UN X
utilities are not always docunented in nan pages. Rather, the docunentation
for themis on a conpact disk. In order to be usable, the conpact disk nust
be inserted into a local nachine’s CD-ROM pl ayer and nounted (ask the site
adm nistrator for help on doing this). To verify that the CDis nounted, |og
on to the nmachine where the CD is nounted and type at the UNI X pronpt:

bdf

The CDis viewed through a utility that has both a character-oriented and a
graphical user interface. 1In order to use the nore conveni ent graphical user
interface, you nust export the nmachine's display to a workstation (again, ask
the site admnistrator for help). Once the CD has been nmounted and the

di spl ay exported, type at the UNI X pronpt:

I rom
You will then be given nenus, dialog boxes, etc., which will allow you to
navi gate through the CD. The Hew ett-Packard web site, http://docs. hp. com
has excel | ent docunentation al so

2.0 dance/d ance Plus

d ance/d ance Plus (or just dance, for short) is a system perfornance
noni toring and diagnostic tool for local site use. It is bundled with the

AG-1

d ancePlus Pack and is available on the DSs and ASs. It is not normally
avai | abl e on the workstations although free tenporary licenses can be obtai ned
for a 90-day trial. dance provides near-real -tine perfornmance infornation
about a conputer system which allows a devel oper to exam ne the inpact of his
or her application on the system dance provides the ability to view
detailed information on individual processes, including CPU and nenory use and
tine spent waiting for different systemresources. d ance has both a
character-based and a graphical -user interface (GQUJ).

The character-based interface is called “glance” whereas the GJ is called
“gpm” There are nman pages for both tools. For detailed information, refer
to the HP d ancePl us/ UX User’s Manual on the conpact disk referenced above.

3.0 Informx

Inform x provides several utilities to nonitor the perfornance of the database
engine. Wat follows is a brief overview of their capabilities. Detailed
descriptions are available in the Inform x Performance Quide for Informx
Dynam ¢ Server

3.1 Onstat Wility

The Inform x onstat utility is used to check the status of the Inform x engi ne
and nonitor its activities. The utility provides a wi de variety of
performance-rel ated and status information. The nost useful option of the
onstat utility is -g, which accepts further paraneters. For detailed
information about onstat -g argunents, refer to the Inform x Adnministrator’s
Qui de

3.2 Onperf Wility

The Inform x onperf utility nmonitors Inform x engine performance. The onperf
utility uses a graphical-user interface (QJ). The utility provides the sane
information as onstat, but graphically and in real-tine. For a detailed

di scussion of onperf, consult the Inform x Performance Quide for Informx
Dynam ¢ Server

4.0 MeasureWare Agent

The HP Measur eWare Agent coll ects conprehensive operating systemactivity
data. The MeasureWare Agent is installed on all AWPS ASs and DSs to coll ect
perfornmance data

The MeasureWare Agent provides data to PerfView (see Section 5.0) for

anal ysis. MeasureWare Agent data can al so be exported to a variety of third-
party products for capacity planning, statistical analysis, and performance
and resource nanagenent (see Section 6.0 on Extract/Excel for an exanpl e of
how this is done).

MeasureWare collects data on three levels: global, application, and process.
The first two itens are of interest in this discussion

d obal and application netrics are sumari zed and | ogged at five-mnute
intervals. The definition of what constitutes global data cannot be altered,;
however, what constitutes application data is user-configurable

In order to collect data that is relevant to the |ocal application under
devel opnent, changes nust be nade to a configuration file, /var/opt/perf/parm

AG- 2

This configuration file is also known as the “parmfile.” For a detailed
di scussion of the contents of the configuration file, consult the conpact disk
(see Section 1.2 of this Appendix). Briefly stated, this is what is required

First, a new application group nust de defined; this is done by inserting a
line of the form

application = | ocal _apps

into the parmfile. This insertion should be made at such a point in the file
that the new application group is the first to be defined. For instance, if a
I ocal devel oper has devel oped an application called xyz, he or she woul d
insert (with assistance fromthe site admnistrator, if necessary), verbatim
the following line into the parmfile of the nmachine on which the application
is to be run:

application = xyz

This insertion would be nade i medi ately before the first application
statenent already in the file

Note: For the ds parmfile, replace the line
“application = preprocess*” with “application = | ocal _apps”

One then associ ates the nanes of executables with the application group by
inserting aline or lines of the following forminto the parmfile inmediately
after the line that defined the application group nane, as foll ows:

file = excutabl e_nanel, executabl e _nane2,

To continue our exanple, if the developer’s application consists of two
execut abl es call ed xyz1l and xyz2, then the devel oper would insert the
following line into the parmfile inmrediately after the previous |line

i nserted:

file = xyzl, xyz2

Note that the full pathname nust NOT be used for the executable nane, only the
nanme of the executable (strictly, the process) which would appear if one
t yped:

ps

at the UNI X pronpt when the process was executing (see Section 8.0 of this
appendi x for nore information on the ps command). This is an inportant
di stinction.

After making the changes to the parmfile, the devel oper (and site
adm nistrator) should verify that the parmfile is still valid by typing at
the UNI X pronpt:

utility -xp

This command i nvokes a program (called utility) which scans the parmfile for
errors and produces a report docunenting the results of the scan. |If errors
are reported, then the parmfile nust be altered. The nbst common source of
error is the follow ng: the nmaxi num nunber of application groups that can be
defined is 31. Should this error be reported, the parmfile nust be nodified

AG-3

either by elimnating or conbining application groups until the error is
renmoved. Wen the parmfile is error-free, the MeasureWare Agent nust be
restarted. This is done by typing at the UN X pronpt:

/opt/perf/bin/ma restart scope
Execution of this command requires root privileges.
5.0 PerfView

HP Perf Vi ew Anal yzer enabl es users to graphically anal yze and docunent |ong-
term historical resource-utilization data collected by MeasureWare Agent
Note that this is in contrast to dance, which is near real time but provides
no long-termstorage of results. Currently PerfViewis installed only at the
NCF.

PerfView at the NCF can be accessed over the wide-area network (WAN). To do
this, log on to a workstation, fromthere, log on to enl-ancf as user “guest”
with password “aw ps”, export the display back to the workstation and type at
the UNI X pronpt:

pv

This will bring up the nain PerfView display. PerfView has extensive online
hel p. Nevertheless, the basic idea is to establish a connection between
PerfView and the nachine that is to be nonitored. |In PerfView terni nology,
this is called “managing the machine.” This is done by sel ecting the nachine
name fromthe |ist of available machines, or, if the machine nanme is not

avail able, adding it to the Ilist and then selecting it. It is possible to
nmanage several nachines sinultaneously; this allows for the conparison of
machi nes to each other

Once the machine on which the local application to be evaluated is being
nmanaged, it is possible to view both global netrics and application-based
nmetrics (see the discussion of MeasureWare Agent above for the distinction

bet ween gl obal and application nmetrics). Gven that there are several hundred
nmetrics available, it is not possible to discuss themall in this appendix;

in any case such a discussion would duplicate the online help

The key netrics that shoul d be anal yzed are:

a. CPU utilization (denoted GLOBAL_CPU TOTAL_UTIL and
APP_CPU TOTAL_UTIL, for the global and application CPU utilization,
respectively)
a. peak disk utilization (PEAK DI SK _UTIL)
b. menory utilization (MEM_UTIL)
c. swapout rates (MEM SWAP_RATE)
d. pageout rates (MEM PAGEQUT_RATE)

The contribution of the |ocally-devel oped application to the global resource
nmetrics should be nonitored; if the application causes undue increases in

gl obal resource netrics, then consideration should be given to ways of
reduci ng those increases. As a rule of thunb, global CPU utilization should
not exceed 70% gl obal peak disk utilization should not exceed 50% gl oba
pageout rate should be less than 5 per second; and gl obal swapout rate shoul d
be l ess than 1 per second.

AG-4

PerfView Tip: After you have connected to your data source,
select “C ass Conpare” and hit “Draw’, select “Application”,
and hit “Select All” then “OK’ on the Instance List, select
“APP_CPU TOTAL_UTIL” on the Metric List and hit “Draw’. This
will plot all of the application buckets in order of CPU
utilization.

6.0 Extract/Mcrosoft™ Excel

It is possible to view data collected by the MeasureWare Agent through third-
party tools. This obviates the need to use PerfView over the wi de-area
network, but requires the devel opnent of custom scripts, spreadsheets, and
graphics to viewthe results.

Sorre such devel opnent has taken place and will be summarized in what foll ows.
Any additional custom zation would be the responsibility of the local site.

It should be noted that the use of the tools described in this section
requi res access to a desktop version of Mcrosoft™ Excel, either Wndows or
Maci ntosh. |If no such access exists, the reader should skip to Section 7.0.

6.1 Extract

To view data coll ected by the MeasureWare Agent, extract the data from
MeasureWare Agent’s log files using the HP utility called “extract.” There is
a man page for extract, and it is fully docunented in the conpact disk (see
Section 1.2). To summarize, the follow ng steps are required:

1. Set up aformat file that the extract utility will use in extracting

the data. This format file is fully described in the docunentation
but a useable sanple file is at Exhibit A6-1.

AG-5

FORVAT DATAFI LE
HEADI NGS ON
SEPARATOR=" "
SUMMVARY=5

DATA TYPE GLOBAL

LAYQOUT=SI NGLE
QUTPUT=gbl . dat

DATE
TI ME

GBL_CPU TOTAL_UTI L
GBL_MEM UTI L
GBL_MEM PAGEQUT_RATE
GBL_MEM SWAPCUT _RATE
GBL_DI SK_UTI L_PEAK

DATA TYPE APPLI CATI ON

LAYOUT=MULTI PLE
QUTPUT=app. dat

DATE
TI ME

APP_CPU_TOTAL_UTI L

Exhibit A6-1. Sanple Format File

This format file should be called “rept.all”.
2. Extract the data by typing, at the UN X pronpt:
extract -r rept.all -m-xp d-1 -GA

Al of the argunents to the extract utility are docunented in the
conpact disk, but the fewthat are rel evant here can be sunmarized as
fol |l ows:

e« The -r option tells extract that a format file is to be used; the
-r option is followed by the file nane.

e« The d-1 option tells extract to extract data for the previous full
day (we do this because our spreadsheets are set up to display a
full day’'s worth of data).

e Finally, the -GA option inforns extract that we wish to extract
both gl obal and application data.

3. Running the extract command with the options given and with the
sanple format file above will create two new files: gbl.dat and
app.dat. These filenanmes are specified by the QUTPUT paraneters in
the sanple fornat file. Note that these files apply only to the
server on which the extract command was run.

AG- 6

I ervil i o rimygor . Lt Xt dPp. LXL 1ept.dali, Liher \

echo OK; \
An alternative whget® run extract involves using a script, as displayed in
Exhi bit A6-2: echo not OK; \

fi'
done

hibit Ab-2. Sanple SCript.

The user planning on using this script should set up two directories under his
or her honme directory, one called source and the other called results. This
user should then put the rept.all file discussed above in the source
directory, along with the script. The first two lines of the script nust be
nodified to reflect the user’s actual nane. After running the script, the
results directory will contain eight files, naned gbl.dsl, gbl.ds2, gbl.asl,
gbl . as2, app.dsl, app.ds2, app.asl, and app.as2. These eight files wll
contain global and application data for the previous day for the four servers
at the local site. These eight files should now be noved, by whatever neans
apply, to the desktop platformwhere Mcrosoft™ Excel is avail able.

6.2 Mcrosoft™ Excel

To display the data fromthe eight files on the desktop nachine, the

M crosoft™ Excel tenplate file nmust be opened fromwithin Mcrosoft™ Excel.
Once the tenplate file is open, it will display a special customtool bar (see
Exhibit A6-3). (Note: The illustrations are for a Mac. The tool bars will
look simlar on a PC since they are customtool bars.)

B EEEEE

Exhibit A6-3. Excel Tool bar.

6.2.1 Open Button

@l |
The Open button, , is used to load the tenplate with the data fromthe
eight files. (Note that this button is not the sane button as the Qpen button
which Mcrosoft™ Excel supplies automatically and which sits on its own
toolbar with New and Save buttons.) In order to load data, the user should
press the button.

The tenplate will respond with a nodal OK-Cancel D alog Box. The tenplate will
not respond to any other user actions until the dialog box is dismssed by
pressing either the Cancel or the OK button. Pressing the Cancel button
interrupts the process of data loading; pressing the OK button initiates it.

If the OK button is pressed, the tenplate will begin to |oad data fromthe
eight files into the tenplate. Status nessages about the progress of the | oad
operation are printed at the lower-left corner of the screen.

Once data are | oaded, the user should press the Annotate button.

6.2.2 Annotate Button

The Annot ate button, |("_') [is used to give the graphs a unique identification.

Once the user presses the Annotate button, the tenplate responds with the
Title Selector dialog box. Enter an appropriate title into the text-edit area
and press the OK button. As usual, pressing the Cancel button at any tine
interrupts the operation and leaves the title unchanged.

AG-7

After selecting the OK button, the tenplate displays the Date Sel ector dialog
box. Enter an appropriate date; usually this is the previous day--that is
what the scripts are set up for. The title and date entered are used by the
tenplate to annotate the graphs that are produced. These annotations are
useful in distinguishing graphs from one anot her.

6.2.3 Print Button

Use the Print button, to print the graphs corresponding to the eight
files discussed above. Once this button is pressed, the tenplate will respond
with a Copies Selector dialog box. Enter the nunber of copies wanted and
press the OK button. The tenplate will print the graphs on the printer
attached to the desktop nachine

6.3 Mdifying the Mcrosoft™ Excel Tenpl ate

To plot data associated with an application, the developer will need to nodify
the tenplate file. Changes need to be made to two of the worksheets in the
tenplate. The first concerns the data worksheet, the second the graph

wor ksheet .

The data worksheet is worksheet 1 in the tenplate. To add a new colum, copy
an existing colum to a blank area of the worksheet, directly adjacent to the
last colum being used. The user should then nodify the top two cells in the
colum to reflect the file the data is to cone fromand the nane of the

application that was used to set up the parmfile for MeasureWare Agent (see

Section 4.0).

Then switch to the graph worksheet (worksheet 2). An existing graph should be
copied to an unoccupied area of the sheet and nodified to point to the colum
set up in the previous paragraph. These two steps are sufficient to allowthe
devel oper’s data to be plotted

7.0 ucron Wility

The ucron utility can be used to nonitor cron activity. The ucron utility
produces a character-based graphic for a given day that depicts the tinmes at
which cron jobs were started and for how long they ran. To use ucron, type:

ucron “ Mmxsp>dd”

at the command line. The surrounding quotes are required. The nonth for which
information is wanted nust be entered as a three-letter abbreviation with an
initial capital letter. The space (<sp>) between the nonth and the day of the
nonth is required, too. The day of the nonth nust be entered either as two
digits or as a single digit preceded by a space. Thus, to obtain a graphic
for the 4th of January, type at the conmmand |ine

ucron “Jan 4"

To obtain one for the 29 of June, type at the command |ine:

ucron “Jun 29"

If the cron log file for the day of interest has been deleted, an error
nessage is printed and the utility exits.

AG- 8

The out put of ucron has two parts: the first part lists the cron jobs that
cron kicked off during the day for which data was requested, the second part
displays a tineline of cron activity during the day.

The first part of the output, as was nentioned, lists the cron jobs that were
kicked off. For each cron job, the utility prints the command that cron
executed as well as a colum nunber; the colum nunber is used in the second
part of the output.

The second part of the output is a 24-hour tineline for the day requested

Data is provided every mnute, so that, altogether, the tineline covers 24
hours tines 60 minutes. For each tine interval and for each cron job, the
utility prints a synbol at the intersection of the row corresponding to the
time interval and the column corresponding to the job. Thus, to find the
activity for a particular cron job, one nust exanmine the first part of the
output to ascertain the colum of the cron job, and then trace the tineline to
determine the cron job’s activity.

The synbols printed are as foll ows:

. an upper-case X in the colum neans that the cron started and conpl eted
in that one-minute interval

. a slash (/) neans that the cron started in the interval

. a vertical line (|) means that it continued;

. a nunber sign (#) neans that it conpleted

. a question mark (?) is used to indicate that there was overlap in the

running of a cron job (which neans that the particular job in question
is taking longer to execute than the tine interval in which it is being
scheduled. Either it nust be made nore efficient or the tinme interva
nmust be increased.).

The output of ucron can be used to help deternmine when to set up cron jobs by
identifying slack tine periods during which they mght be scheduled. It can

also be used to determne if cron jobs are conpleting in a reasonabl e anbunt

of tine.

8.0 UNI X Tools

Table A6-1 briefly describes sone of the UNNX tools that can be used to
nonitor the performance of an application. In all cases, the man page for the
utility should be consulted for detailed infornmation about its use. See
Section 1.1 for infornmation on how to use man pages.

Table A6-1. UN X Tools

Uility Description
vnst at The vinstat utility displays virtual -nmenory statistics. 1t can

be used to determne if an application is forcing a lot of
pagi hg or swapping to the disk

i ost at The iostat utility displays I/Outilization statistics for al
active disks on the system It can be used to determ ne how
much additional 1/O an application is causing, above the I/0
bei ng caused by all other applications.

sar The sar utility produces systemactivity reports of CPU, nenory,

and di sk usage. The sar utility conbines the functionality of
several of the other tools discussed in this section, including
vinstat, iostat, and top

AG-9

Uility Description

ps The ps utility displays informati on about process states.

net st at The netstat utility displays statistics for network connections
and protocol s.

top The top utility displays, in near real tine, the active
processes that are consunm ng the nost CPU.

A6-10

Appendi x 7

Suggest ed Format for Mi ntenance Docunent ati on

The format of the NWS Conputer Program Series (CPS) docunent and the AWPS
Application Library (AAL) docunent are the sane. The format for externa
docunentation for a conplete programis shown below A different format is
used for subprograns that are part of an AWPS local applications library
group. The subprogramformat is shown in Section 2.0

1.0 Format for conplete prograns

The followi ng organi zati on should be used in preparing docunentation for
conpl ete prograns.

a. Introduction
Present a brief background discussion of the program and the reason for
developing it.

b. Methodol ogy and Software Structure
Sunmari ze the flow of the programand the data in clear, sinple
statenents that describe how the programworks. D scuss any scientific
formul as and mat henatical algorithns to show the scientific foundation
of the program For C and FORTRAN prograns, provide a figure to
illustrate the relationship anong, as applicable, the disk files (data
files, control files, and static data), the Relational Data Base
Managerment System (RDBMS), the progran{(s) or major processes, and the
out put data product(s) and/or the display. For C++ prograns, provide a
cl ass di agram whi ch shows categories, classes, attributes, nethods, and
relationships in a standard notati on such as Booch-93

c. Cautions
Describe programlimtations that can affect the use of the program and
its output. Include possible operational failures and restrictions on
the interpretation of the output.

d. References
List references to the published material that is cited in the text.
The Anerican Meteorol ogical Society's Journal Reference Systemis the
accept ed standard.

e. Information and Procedures for Installation and Execution
This section contains infornmati on needed by those who will be building
and using the program There are four parts, A through D

Part A. ProgramlInformation. This part lists the program
characteristics, systemrequirenents, and the non-application-specific
AW PS system and hydronet eorol ogi cal data files and RDBVS data that
will be needed. This part also includes descriptions of any vendor-
speci fic and non-standard software usage and hardware requirenents
needed by the application. The detailed contents of Part A are shown
in Exhibit A7-1.

Part B. ProgramFile and Database Information. This part contains a
conplete inventory listing of all source code for the program a
listing of all application-specific data files used by the program and
a description of any application-specific RDBVS databases and tabl es

A7-1

and dat abase schema used by the program The detailed contents of Part
B are shown in Exhibit A7-2

Part C Program Creation and Installation Procedure. This part
contains instructions for setting up the application environnent, and
for building and installing the program It also contains a |listing of
any tar files in which the application source and/or data files are
provi ded, and a description and listing of all nakefiles needed to
build the program The detailed contents of Part C are shown in

Exhi bit A7-3

Part D. Execution Procedures and Error Conditions. This part gives
the running instructions that users are to follow, and the inportant
error conditions that users may encounter. This part is limted to two
pages. The detailed contents of Part D are shown in Exhibit A7-4.

If the programis sufficiently conplex, a separate User's Quide should
be devel oped to describe its use and included as an appendi x to the
docunentation (see itemg, below). In this case. Part D should
reference and defer to the User's Quide

f. Figures
Include figures as a group, unless they can be interm xed with the text

for greater clarity. Make all captions descriptive. Design the
graphics so that they are conparable in quality to graphics produced by
the printer/plotter nodule. Gaphics should be in softcopy (scanned
screen-captured, or drawn with a graphi cs package), in a format
conpatible with word processi ng packages, and incorporated into the
docunent. For conpiled code, a figure that illustrates the program
structure by show ng the mai n program and subprograns is optional but
recommended. There are software analysis tools available centrally to
autonatically generate structure diagranms for C and FORTRAN
appl i cations; however, results vary depending on the type and
conplexity of the application. |If desired, a flowhart of the program
can be located in an appendi x.

g. Appendices
Include pertinent information that is not suitable for the main body of
the text. For exanple, error condition listings that cause the
Executi on Procedure section to exceed a 2-page space limt should be
pl aced in an appendi x. However, do list the nost inportant error
conditions in the Execution Procedure section. If a User's Quide is
devel oped for the program it should be placed here in an appendi x.

An exanpl e program structure diagramis shown below. Such a di agram shoul d
show the flow of the nain programfromtop to bottomand the flow of the
subroutines fromleft toright. 1In this diagram the nmain program WSANAL
references first RDOCEF, then CRSSET, and so forth. Subprogram CNTR3
references COLPT, then MAXMNI, which references ASCII. Then CNTR3 references
LABEL, which also calls ASCI.

A7-2

MAI N PROGRAM
WSANAL
SUBROUTI NES

RDCCEF

CRSSET +Q

SMOOTH * OOLPT

CNTR3 S))))1 MAXWNL S))))))))Q ASC |
* LABEL S))))))))Q AsC |
-Q

In general, the length of the docurmentation for a programwill reflect the
conplexity of the program |In sone cases, especially for relatively sinple
prograns, Section I, |NTRODUCTIQN, and Section 2, METHODOLOGY and SOFTWARE
STRUCTURE, will be brief. Section 3, CAUTIONS, Section 4, REFERENCES, and
Section 7, APPENDI CES nay be omtted.

The contents of Parts A, B, C, and D for a full programare outlined bel ow
Sanpl e formats are shown in Exhibits A7-1 through A7-4.

1.1 Contents of Part A for Prograns

Part A ProgramInformation, contains the follow ng infornmation:

Program Title.
The title for the programthat appears in the CPS docunment. The title
shoul d be descriptive of the function of the program

Conputer Program Series (CPS) ldentifier. The nunber given to the program
by regional or NWs headquarters, and the date of the publication. This
identifier will serve as a reference to the docunentation for the program
If the programis not part of a formal CPS, the identifier is omtted.

Section 1.0: Program Nane.
The name given to the executable file, or the script, command, or nmenu item
that initiates the program This section also includes the itens:

a. Part O, which is the package or suite of applications (if any) to
whi ch the program bel ongs, or in which the programruns.

b. AAL Identifier and Revision Nunber. This will be the AAL for the
program It is assigned by the AAL. Leave these itens blank. The
revi sion nunber for the first version of a programw || be . As
revisions are made to the program the revision nunber will be assigned
by the AAL librarian.

Section 2.0: Purpose.
A brief description of what the programdoes, the data on which it
operates, and the output product(s), data, or display(s).

Section 3.0: Program Infornation.
Thi s section includes:

A7-3

Devel opnent programmer (s) - the personnel responsible for designing
coding, and testing the program

Locati on, phone, E-nmail - the site where the programwas devel oped and
phone nunbers and E-nmi| addresses of the devel opers

Mai nt enance programmer(s) - the personnel who are responsible for the
program after devel opnent and testing are conpleted, and who will be
notified to make corrections, revisions, or enhancenents, if necessary.

Locati on, phone, E-nail - as in (b), but for nmintenance programer(s).

Language - the | anguage of the source code. Conpiled prograns will be
either FORTRAN 77, C, C++, or a mx of these. Interpreted prograns nay
be Perl, netCDF Perl, Tcl/Tk, etc. If there is a mx, each |anguage
and interpreter is specified. Aso indicated is the revision nunber of
the conpiler or interpreter

Executabl e Type - classification of the program as:

1) Standard - a non-interactive executable programunit consisting
primarily of a conpiled nmain programand subprograns. The program nmay
have a user interface (of interpreted or conpiled code) with which to
specify run parameters, will run to conpletion with no further user
input after the initialization paraneters are specified. A standard
program nmay al so be initiated by a cron job, a script, fromthe comand
line, or by another application.

2) Interactive - a programwith a user interface and a child process
whi ch both remain active while data and/or the display are being
nodi fied or operated upon by the application

3) Interpreted - a program or nodul e conprised of non-conpiled code
such as shell scripts, Perl, or Tcl/Tk. An interpreted nodule (e.g., a
U built in Tcl/Tk) nmay be a part of an Interactive or Standard

pr ogr am

Running tine - the approximate running times (CPU tine and C ock tine)
in whol e seconds, when (if allowed by the application) run at the sanme
tine that normal AWPS processes are running on the host nachine(s).
This applies to maj or subprocesses of prinmarily-interactive
applications, not to the user interactions with the interface

Di sk space - the total required disk space in units of bytes. A
separate total is given for the executable programfiles, for al
application-specific data files conbined, and for application-specific
RDBVS usage. |t nmay be necessary to estimate requirenents for data
file space. The estinate should reflect a probable upper limt.

Host Machi ne(s) - The hosts (check all that apply) on which nmajor
processes of the properly-configured programrun. Does not include NFS
access of data files residing on another nachine's disks, or export of
di spl ayed output to another machine's nonitor.

Section 4.0: AWPS Data File/Data Base Access (non-application-specific).

This section docunents the progranis usage of existing AWPS data sets from
flat files and fromthe RDBMS. It is broken down into three subsections,
descri bed bel ow.

A7-4

Section 4.1: Data File Usage (flat files).

This section includes the foll ow ng:

a.

Accesses AWPS System HydroMet Data Files? - enter YES or NOin the
space indicated. |If yes, then fill inlist in b, below

Li st of AWPS Systenm HydroMet Data Files accessed by the program This
is atable with colums for the follow ng:

TYPE - the data type; e.g., Gids, Satellite, METARs, RACBs
FORMAT - the file format; e.g., netCDF, native, plotfile

Subt ype(s)/Subdirector(ies) - for grids, radar, satellite, or other
data with various resolutions, channels, sources, etc., indicates the
speci fic data accessed by the application (nornally distinguished by
their data subdirectories). Enter each subtype on a separate |ine,
or enter ALL if application uses, or has a choice of, any or all
subt ypes.

READ WRI TE - enter Rif the file is read by the application, Wis the
file is witten or nodified by the application, RRWif both.

Section 4.2: AFCS/ Text Database Product Usage

This section includes the foll ow ng:

a.

Accesses AWPS Text Database? - enter YES or NOin the space indicated.
If yes, then fill inlist in b, below

Li st of AWPS Text Database products accessed by the program This is
a table with colums for the follow ng:

ID - The AWPS PIL of the product read or created by the program in
cccNNNxxx format. The specific NNN product IDs are mandatory. Note
that specific identifiers are capitalized; for exanple, a specific
surface observation (METAR) is WBCMIRI AD. Generalized identifiers
are not. A generalized METAR is cccMIRxxx. Site configurability or
localization requirenents for ccc and xxx should be indicated in
COMMVENTS.

READ WRI TE - enter Rif the product is read by the application, Wif
the product is witten to the Text Database by the application, R'W
if both.

COMMENTS - Any other inportant infornmation related to how the
i ndividual text products are handled by the program |If witten PIL
is not a known or existing ID, indicate in COMENTS section.

Section 4.3: AWPS RDBMS Dat abase/ Tabl e Usage

This section lists all data directories and data files that are specific to
this application program both input and output data files. This section
includes the follow ng:

a.

Accesses AWPS I nform x Database Tabl es? - enter YES or NO in the space
indicated. |If yes, then fill in (b), bel ow

List of AWPS RDBMS itens accessed by the program This is a table
with colums for the follow ng:

A7-5

dbspace - the Inform x dbspace under which the AWPS database is
| ocat ed

DATABASE NAME - the name of the AWPS Inform x database used by the
application

TABLE NAME - the nanme of the table in the given database

PRI VI LEGES - the privileges required for the application to use the
dat abase tabl e

Section 5.0: Portability
This section contains two itens:

a. Vendor-Specific Hardware Requirenents - describe any dependencies that
the program has on specific pieces of hardware.

b. Non-Standard OS/ Sof t war e/ Conpi | er Extensions - describe any non-
standard operating system dependenci es, any extensions to the ANSI
standards and/or exceptions to the AWPS guidelines for the high-Ievel
| anguages (C, C++, FORTRAN) that are used in the source code, and any
vendor - speci fic conpilation options required by the code.

1.2 Contents of Part B for Prograns

Part B, ProgramFile and Database Information, contains the follow ng
i nformation:

Program T Title.
As shown in Part A

Section 1.0: PROGRAM FILE | NFORVATI ON
This section contains listings of all source and data files specific to the
application. It consists of two subsections:

Section 1.1: Source file inventory
This section lists all source code directories and files needed to build
the executable program It contains two itens:

a. Directory Nane - the absolute pathnanme for the single directory which
contains the files listed in (b). |If the files are packaged in a tar
file, this should nmatch the directory under which the files will be
restored when the files are extracted.

b. List of AWPS Systemf HydroMet Data Files accessed by the program This
is atable with colums for the follow ng:

FILE LISTING - this is a list of all source code files (nakefiles
included) for the programthat are in the directory indicated in (a),
above. This listing is extracted fromthe columar fornat produced
by the HP-UX | s command with the -1 -0 -g -F options in effect. A
sanple |Is output line is shown bel ow

SITWIr--T-- 1 10190 Feb 11 1997 hnHMJ convG i dToEart hW ndConp. f

The file type and permissions (-rwr--r--) and the nunber of links to
the file (1) should be renoved fromthe listing, |eaving:

A7-6

10190 Feb 11 1997 hnHMJ convG i dToEart hW ndConp. f
where 10190 is the file size in bytes, the next element (Feb 11
1997) is the last nodification date/tine (or date/year if older than

6 nos.), and hnHMU conv@i dToEart hWndConp.f is the full file nane.

LANGUACE - indicates the programm ng | anguage for the source code
contained in the file.

Itens (a) and (b) above are repeated for each source code directory
pertaining to the program

Section 1.2: Application-Specific data file inventory

This section lists all data directories and data files that are specific to
this application program both input and output data files. This section
includes the follow ng:

a. Uses Application-Specific Data Files? - enter YES or NOin the space
indicated. |If yes, then fill in (b) and (c), bel ow

b. Directory Nane - the absol ute pathnane for the single directory which
contains the files listed in (b). |If the files are packaged in a tar
file, this should nmatch the directory under which the files will be
restored when the files are extracted.

c. List of files accessed or created by the program This is a table with
colums for the foll ow ng:

FILE LISTING - this is alist of all data files for the programthat
are inthe directory indicated in (a), above. The format of this
listing is extracted fromthe columar format produced by the HP-UX
Is coomand (see itemb in Part B, Section 1.1, Source File
Inventory). For the case where newnaned files are created by each
run of the program show the tenplate for the fil enanme surrounded by
<angl e> brackets and define the tenplate i medi ately bel ow the
listing.

FORMAT - the format of the data file: ASC |, binary, netCDF,
shapefile, Inform x unload file, etc.

RWCT - file status and disposition. Enter Rif the file is read by
the application, Wif the product is witten to or nodified by the
application, Cif the file is newy created when the application is
run, and T if the file is supposed to be a tenporary file. Enter as
many as apply, separate by slashes, e.g., RWC

Itens (b) and (c) above are repeated for each datafile directory pertaining
to the program

Section 1.3: File Disposition

This section should provide a set of comments relating to file status and
di sposition for each file is Section 1.2. Comrents tell the user briefly
how the data sets are created if they do not already exist. For output
files or tenporary files, comments tell the user the status and di sposition
of each file, whether the file is created by the user or the program and
whether the file is left on disk after the program conpl etes.

Section 2.0: RDBVS | NFORVATI ON

A7-7

This section will be filled in for applications which use their own RDBVB
tables. It consists of three subsections.

Section 2.1: Database/Table Usage

This section lists all data directories and data files that are specific to
this application program both input and output data files. This section
includes the follow ng:

a. Uses Application-Specific Inform x Database Tables? - enter YES or NO
in the space indicated. |If yes, then fill in (b) and Sections 2.2 and
2.3, bel ow

b. List of application-specific RDBVB itens accessed by the program This
is atable with colums for the follow ng:

dbspace - the Inform x dbspace under which the application's database
is created

SIZE - the size of the disk allocation for the dbspace containing the
dat abase(s), in the units of 2 kil obyte di sk pages

DATABASE NAME - the nane of the Inform x database used by the
application

TABLE NAME - the nanme of the table in the given database

Section 2.2: Database Schema

This section contains information on table and colum definitions, data
types, lengths, key definitions, constraints, indexes, default val ues
privileges, etc., needed to recreate the tables in the database. The
dbschenma command for Inform x can create a |listing of commands needed to
recreate the database and tables, and this information can be saved to a
file. In that case, an inventory and description of the files that contain
the schema can constitute the information in this section. |[|f the database
tabl es are created by another programthrough ESQ, then this section nay
consist of a reference to that programis CPS

Section 2.3: Data Dictionary
This section lists the plain-language definitions for the variables in each

colum in the database tables in (b), above. Indicates units, range,
format, case sensitivity, optionality, and business rules applying to the
vari abl e.

1.3 Contents of Part C for Prograns

Part C, Program Creation and Installation Procedure, contains the follow ng
i nformation:

Program T Title.
As shown in Part A

Section 1.0: tar File Information
This section includes the foll ow ng:

a. tar file(s) provided? - enter YES or NOin the space indicated. |If
yes, then fill in (b), bel ow

A7-8

b. MDIUM- If the tar files are delivered on a portable magnetic or
optical nmedium this indicates the type; e.g., 8mmtape, optical

c. LABEL - the identification on the |abel applied to the disk or tape

d. Listing of tar files containing the progranmis source code and data
files. The format of this listing is extracted fromthe col umar
format produced by the HP-UX | s command (see itemb in Part B, Section
1.1, Source File Inventory).

Section 2.0: Program Creation and Installation

This section gives the details of the environnent set-up needed for the
programto correctly run, and the versions of the operating system
conpi l ers, and ot her packages under which the executable code is built and
run. It also describes procedures for installation of the executable
program There are four subsections to this section

Section 2.1: Mkefiles

This section should describe all nakefiles associated with building the
program their locations in the source tree, their interdependencies, and
order of execution. |f the makefiles are not included in the source file
inventory of Section 1.1 of Part B, then an inventory shoul d be incl uded
here.

Note that if nakefiles are not provided with the package (an undesirabl e
option), then this section nmust include a full set of the conpile and |ink
comrand |ines needed to build the program including references to
libraries (AWPS and/or standard). The use of nakefiles is strongly
reconmended.

Section 2.2: Application Environment

This section docunents the types and versions of the operating system
conpi l ers, and other COTS (Commercial, Of-The-Shelf) packages under which
the executable code is built and run. It includes the following itens:

a. (perating Systemand Version - e.g., HP-UX 10.20

b. Conpiler/Interpreter and Version - e.g., HP FORTRAN 9000 version 9.0
This itemis repeated for as many conpilers, interpreters (e.g.
Tcl / Tk), and COTS code packages as are involved in the program code

c. Environment Variables - Lists the names and definitions of al
environnment variables that need to be set for the application to be
built and run. Only include those that are in addition to the AWPS
system environnent variables required to be defined for AWPS libraries
or resources that are used by the application. The follow ng four
itens are to be |listed:

- NAME: the full nane of the environnent variable

DEFINITION. the value of the environnent variable

- RUN SETUP: indicates whether the variable is needed for runtinme (R
or for setup/creation of the program (S), or both (R'S)

- SCCPE

Section 2.3: Detailed Installation Procedures

A7-9

This section describes all the steps involved in setting up the
environnent, configuring the system building the application, installing
the executabl es, and, as needed, file deconpression, relationships to other
prograns, creating and initializing the data files, creation and | oadi ng of
RDBVS tabl es, setting up cron jobs and scripts, and directions on running
scripts to automatically performany of the above.

Section 2.4: Installation Scripts

This section provides an inventory of any scripts that have been devel oped
to automate the process of setting up the programbuild and runtine
environnents, and building and installing the program It includes the
foll owi ng:

a) Directory Nane - the absol ute pathnane for the single directory which
contains the files listed in (b). |If the files are packaged in a tar
file, this should nmatch the directory under which the files will be
restored when the files are extracted.

b) List of script files needed by the program This is a table with
colums for the foll ow ng:

FILE LISTING - this is a list of all script files for the programthat
are inthe directory indicated in (a), above. The format of this
listing is extracted fromthe columar format produced by the HP-UX
Is coomand (see itemb in Part B, Section 1.1, Source File

Inventory).

SHELL - indicates the progranmm ng shell |anguage for the commands
contained in the script.

Itens (a) and (b) repeat for each directory containing programrel ated
scripts.

1.4 Contents of Part D for Prograns
The contents of Part D, Execution Procedures and Error Conditions, are

outlined below. A sanple format is shown in Exhibit A7-4. A sanple program
is shown in Appendi x E.

Part D (of Subsection e, above) contains the follow ng information:

Conput er Program Series (CPS) ldentifier.
Same as Part A

Program T Title.
Same as Part A

Program Nane.
Same as Part A

AAL Identifier and Revision Nunber.
Same as Part A

Progr am Executi on.

List the steps that the user should follow in running the program Any
addi tional prograns that nust be run prior to running the programare
indicated by their AAL identifier, CPS reference, or other generally
recogni zed |l abel. The commands and options/switches are specified and

A7-10

exanpl es given. Conpletion nmessages should be given in a formthat the
user will recognize easily.

Error Conditions.

A list of possible error conditions that the user may encounter in an
operational setting. Mbst disk processing error returns (reading or
witing) do not have to be included. However, progranmed display nessages
to the user are necessary, especially if user action is required. The |ist
of error conditions in this section should cite the nessages that the user
wi Il see during execution, the location (logfile or screen) where the user
will see them a straightforward and cl ear description of what the error
nmessages nmean, and a course of action for the user to follow as a response.

2.0 Docunentation Format for a Subprogram

The information required for the external docunentation of a subprogramis
nearly the sane as that required for prograns. Al subprogranms (functions,
subroutines) that are nodules of a library or are expected to be used in nore
than one program shoul d be externally docunented. The foll owi ng organization
shoul d be used in preparing docunentati on for subprograns.

a. Introduction
Present a brief background di scussion of the subprogramand the reason
for developing it.

b. Methodol ogy and Software Structure
Sunmari ze the flow of the subprogramand the data in clear, sinple
statenents that describe how the subprogram works. Discuss any
scientific fornmulas and nat hermatical algorithns to show the scientific
foundati on of the program

For subprograns that call |ower routines or have direct inputs or
outputs (i.e., other than the passed paraneters), provide a figure to
illustrate the relationship anong, as applicable, the disk files (data
files, control files, and static data), the Relational Data Base
Managerment System (RDBMS), |ower-1evel subprogran(s) or najor
processes, and the direct output data and/or the display. For GC++,
provi de a cl ass di agram whi ch shows categories, classes, attributes,
met hods, and rel ationships in a standard notation such as Booch-93.

c. Information and Procedures for Installation and Execution
This section contains infornmati on needed by those who will be conpiling
and using the subprogram There are four parts, A through D

Part A. SubprogramlInformation. This part |ists the subprogram
characteristics, systemrequirenents, and the non-application-specific
AW PS system and hydronet eorol ogi cal data files and RDBVMS data that
will be needed. This part also includes descriptions of any vendor-
speci fic and non-standard software usage and hardware requirenents
needed by the application. The detailed contents of Part A are shown
in Exhibit A7-5

Part B. SubprogramFile and Database Information. This part contains
a conplete inventory listing of all source code for the subprogram a
listing of all application-specific data files used by the subprogram
and a description of any application-specific RDBVS dat abases and
tabl es and dat abase schema used by the subprogram The detail ed
contents of Part B are shown in Exhibit A7-6

A7-11

Part C Program Creation and Installation Procedure. This part
contains instructions for setting up the application environnent, and
for building and installing the subprogram It also contains a listing
of any tar files in which the application source and/or data files are
provi ded, and a description and listing of all nakefiles needed to
build the subprogram The detailed contents of Part C are shown in
Exhi bit A7-7.

Part D. Manual Page for Programmers. This part is intended to give
all the information that a programmer needs in order to use the
subprogramin an application. It is an adaptation of the fornmat and
content of the man page for UNIX utilities. It includes calling
paraneters, include files, error codes, |anguage, limtations, and an
exanpl e of use. The detailed contents of Part D are shown in Exhibit
A7- 8.

The contents and instructions for Parts A, B, C, and D are outlined bel ow.
Sanpl e formats are shown in Exhibits A7-5 through A7-8.

2.1 Contents of Part A for Subprograns

Part A, Subprogram Information, contains the follow ng information:

Subprogram Ti t!l e.
The title for the subprogramthat appears in the CPS docunent. The title
shoul d be descriptive of the function of the subprogram

Conputer Program Series (CPS) ldentifier. The nunber given to the
subprogram by NWS headquarters, and the date of the publication. This
identifier will serve as a reference to the docurmentation for the
subprogram |If the subprogramis not part of a fornmal CPS, the identifier
is omtted.

Section 1.0: Subprogram Nane.
The name given to the subprogramas defined in the code and used in the
call to the subprogram This section also includes the itens:

a. Library Nane is the nane of the library to which the subprogram
bel ongs.

b. AAL Identifier and Revision Nunber. This will be the AAL for the
subprogram It is assigned by the AAL. Leave these itens blank. The
revi sion nunber for the first version of a subprogramwill be
As revisions are made to the subprogram the revision nunber will be
assigned by the AAL librarian.

Section 2.0: Purpose.
A brief description of what the subprogram does, the data on which it
operates, and the output product(s), data, or display(s).

Section 3.0: Subprogram |Information.
This section is the sane as for program docunentation, except for:

f. Executable Type - not required

g. Running tinme - not required

A7-12

h. Disk space - the subtotal given for the subprogramfiles is for the
object files.

i. Host Machine(s) - not required

Section 4.0: AWPS Data File/Data Base Access (non-application-specific).
This section is the sane as for program docunentati on.

Section 4.2: AFCS/ Text Database Product Usage
This section is the sane as for program docunentati on.

Section 4.3: AWPS RDBVMS Dat abase/ Tabl e Usage
This section is the sane as for program docunentati on.

Section 5.0: Portability
This section is the sane as for program docunentati on.

2.2 Contents of Part B for Subprograns

Part B, SubprogramFile and Database Infornation, contains the sane
information as for program docunentation, except for the follow ng:

Section 2.2: Database Schema

If this informati on has been docunented for a nmain program this section
shoul d consist of a reference to that programis CPS. |If not, then this
section contains the sane information as for program docunentation.

Section 2.3: Data Dictionary

If this informati on has been docunented for a nain program this section
shoul d consist of a reference to that programis CPS. |If not, then this
section contains the sane information as for program docunentation.

2.3 Contents of Part C for Subprograns

Part C, Subprogram Oreation and Installation Procedure, contains the sane
information as for program docunentati on.

2.4 Contents of Part D for Subprograns

The contents of Part D, Manual Page for Programmers, are outlined below. A
sanple format is shown in Exhibit A7-8.

Conput er Program Series (CPS) ldentifier.
Same as Part A

NAVE
This section contains two itens:

a. routine_nanme - the nane of the function or subroutine as it appears in
the call

b. a short, one-sentence description of the functionality of the nodul e
SYNCPSI S
This section lists all include files needed to use the subroutine in the

calling routine, any FORTRAN COWON used, and shows the calling sequence as
shown in Exhibit A7-8.

A7-13

DESCRI PTI ON
This section consists of six parts:

a. A conplete but concise description of the routine, with enough detai
to Il et another application programer determ ne what the routine does,
and how it works. It should describe basic algorithns, |ist
references, describe limtations on use, etc

b. Alist of calling paraneters. List paranmeters by nane, show data type
and i nput/output usage, and define all paraneters individually as shown
in Exhibit A7-8. |f FORTRAN COMMON vari abl es are used for input or
output, indicate these variables and any block labels in the |ist.

c. QUTPUT - This section describes all direct outputs such as file
creation, file wites, and error |ogs and nessages.

d. RESTRICTIONS - Describes any linmtations on use of the subroutine
(singularities, size restrictions, disallowed paraneter val ues, etc.).

e. COWENTS - Optional information about the algorithm code history, etc

f. LANGUACE - The | anguage in which the subroutine or function is witten.

RETURN VALUES

This section lists the return values and their data types, with a short
description of each

ERRORS
This section lists the valid errors for the subprogram Each entry
contains two itens:

a. ErrorCode - the value of the returned error code

b. a plain-language description of the error corresponding to the error
code

EXAMPLES

This section shows one or nore source code exanples containing a call to
the function or subroutine, with all calling argurments defined and

di mensi oned, and all necessary include files declared. It should be a
reasonably conplete and useful snippet of code, not just a single |ine of
code with the call to the subprogram

SEE ALSO

This section should list the nanes of any related or subordi nate functions
or subroutines for which there are nanual pages of docunentation; for
instance, a callable higher-level subroutine with nmore functionality.

A7-14

EXH BI TS for Appendix 7

PROGRAM DOCUMENTATI ON:

Exhibit A7-1. Contents and fornat

Exhibit A7-2. Contents and fornat
| NFORMATI ON.

Exhibit A7-3. Contents and fornat

I NSTALLATI ON PROCEDURE.

Exhibit A7-4. Contents and fornat
CONDI TI ONS.

SUBPROGRAM DOCUMENTATI ON:

Exhibit A7-5. Contents and fornat

Exhibit A7-6. Contents and fornat
| NFORMATI ON.

Exhibit A7-7. Contents and fornat

I NSTALLATI ON PROCEDURE.

Exhi bit A7-8. Contents and fornat

for

for

for

for

for

for

for

for

PART A

PART B:

PART C.

PART D:

PART A

PART B:

PART C.

PART D:

A7-15

PROGRAM | NFCRVATI ON.

PROGRAM FI LE AND DATABASE

PROGRAM CREATI ON AND

PROGRAM EXECUTI ON AND ERRCR

SUBPROGRAM | NFORVATI ON.

SUBPROGRAM FI LE AND DATABASE

SUBPROGRAM CREATI ON AND

MANUAL PACE FOR PROGRAMVERS.

PROGRAM TI TLE

PART A: PROGRAM | NFORVATI ON

1.0 PROGRAM NANE: AAL | D
PART OF: Revi si on no.:
2.0 PURPCSE:

3.0 PROGRAM | NFORVATI ON

Devel opnent Programmer (s):
Locati on:

Phone:

E- Mai | :

Mai nt enance Programmer (s):

Locati on:
Phone:
E- Mai | :
Program Language(s): Execut abl e Type:
(e.g. C, FORTRAN, Tcl/Tk) (Standard, Interactive, Interpreted)
Nom nal Running tine - CPU seconds: CLOCK seconds:
Di sk space - Executable file totals: byt es
Application-specific data file totals: byt es
RDBVS tabl e totals: byt es
Host Machi ne(s): ___ Wirkstation ___ X-Terminal ___ AS ___ DS
4.0 AWPS Data File/Data Base Access (non-application-specific)
4.1 Data File Usage (flat files)
Accesses AWPS Systeni HydroMet Data Files (YES or NO: _
TYPE FORVAT Subt ype(s)/ Subdirector(ies) READ WRI TE
4.2 AFCS/ Text Database Product Usage
Accesses AWPS Text Database (YES or NO: _
1D READ VRI TE COWMENTS
4.3 AWPS RDBVS Dat abase/ Tabl e Usage
Accesses AWPS | nform x Database Tables (YES or NO: __
dbspace DATABASE NAMVE TABLE NAVE PRI VI LEGES

5.0 Portability

Vendor - Speci fi ¢ Hardware Requirenents:

A7-16

Non- St andard OS/ Sof t war e/ Conpi | er Ext ensi ons:

Exhibit A7-1. Contents and format for PART A: PROGRAM | NFORMATI ON.

A7-17

PROGRAM TI TLE
PART B: PROGRAM FI LE AND DATABASE | NFORVATI ON
1.0 PROGRAM FI LE | NFORMATI ON
1.1 Source file inventory

Directory Nanme (Absolute):

File Listing:
S| ZE DATE/ TI ME El LENAVE LANGUAGE
10190 Feb 11 1997 hnHMJ convG i dToEar t hW ndConp. f FORTRAN

(Repeat Directory Nane and File Listing for each directory)

1.2 Application-Specific data file inventory
Uses Application-Specific Data Files (YES or NO:

Directory Nanme (Absolute):

File Listing:
S| ZE DATE/ TI ME El LENAVE FORVAT RWCOT

(Repeat Directory Nane and File Listing for each directory)

1.3 File Disposition

2.0 RDBMS | NFORVATI ON
2.1 Database/ Tabl e Usage
Uses Application-Specific Inform x Database Tables (YES or NO:

dbspace Sl ZE (2K pages) DATABASE NANVE TABLE NAVE

2.2 Database Schenma

2.3 Data Dictionary

Exhibit A7-2. Contents and format for PART B. PROGRAM FI LE AND DATABASE
| NFORMATI ON.

A7-18

PROGRAM TI TLE
PART C. PROGRAM CREATI ON AND | NSTALLATI ON PROCEDURE
1.0 tar File Information
tar file(s) provided (YES or NO: _

VEDI UM LABEL:

File Listing:
S| ZE DATE/ TI ME El LENAVE

2.0 Program Creation and Installation

2.1 Makefiles

2.2 Application Environnent

Operating System Ver si on:
Conpi l er/Interpreter: Ver si on:

(Repeat Conpiler/Interpreter and Version for each used)

Envi ronnent Vari abl es:

NAVE DEFI NI TI ON RUN SETUP

SCOPE

2.3 Detailed Installation Procedures

2.4 Installation Scripts

Directory Nanme (Absolute):

File Listing:
S| ZE DATE/ TI ME El LENAVE SHELL

(Repeat Directory Nane and File Listing for each directory)

Exhibit A7-3. Contents and format for PART C. PROGRAM CREATI ON AND
| NSTALLATI ON PROCEDURE.

A7-19

PROGRAM TI TLE

PART D: PROGRAM EXECUTI ON and ERROR CONDI TI ONS

PROGRAM NANME: AAL 1 D
Revi si on no.:

PROGRAM EXECUTI ON

1. This section is probably highly inadequate for AW PS.

ERROR CONDI T1 ONS

ERROR LOG MESSAGES MEANI NG

1-

2-

SCREEN MESSAGES MEANI NG

1-

2-

Exhibit A7-4. Contents and format for PART D, PROGRAM EXECUTI ON AND ERROR
CONDI TI ONS.

A7-20

SUBPROGRAM TI TLE

PART A: SUBPROGRAM | NFORIVATI ON

1.0 SUBPROGRAM NAME: AAL | D
LI BRARY NAME: Revi si on no.:
2.0 PURPCSE:

3.0 SUBPROGRAM | NFCRVATI ON

Devel opnent Programmer (s):
Locati on:

Phone:

E- Mai | :

Mai nt enance Programmer (s):
Locati on:

Phone:

E- Mai | :

Subpr ogr am Language(s) :

Di sk space - Ohject file totals: byt es
Application-specific data file totals: byt es
RDBVS tabl e totals: byt es

4.0 AWPS Data File/Data Base Access (non-application-specific)
4.1 Data File Usage (flat files)
Accesses AWPS Systeni HydroMet Data Files (YES or NO:

TYPE FORVAT Subt ype(s)/ Subdirector(ies) READ VRI TE

4.2 AFCS/ Text Database Product Usage
Accesses AWPS Text Database (YES or NO):

1D READ WRI TE COMMENTS

4.3 AWPS RDBVS Dat abase/ Tabl e Usage
Accesses AWPS | nform x Database Tables (YES or NO:

dbspace DATABASE NAME TABLE NAVE PRI VI LEGES

5.0 Portability
Vendor - Speci fi ¢ Hardware Requirenents:

Non- St andard OS/ Sof t war e/ Conpi | er Ext ensi ons:

Exhibit A7-5. Contents and format for PART A: SUBPROGRAM | NFORNVATI ON.

A7-21

SUBPROGRAM TI TLE

PART B: SUBPROGRAM FI LE AND DATABASE | NFORVATI ON
1.0 SUBPROGRAM FI LE | NFORVATI ON
1.1 Source file inventory

Directory Nanme (Absolute):

File Listing:
S| ZE DATE/ TI ME El LENAVE LANGUAGE
10190 Feb 11 1997 hnHMJ convG i dToEar t hW ndConp. f FORTRAN

(Repeat Directory Nane and File Listing for each directory)

1.2 Application-Specific data file inventory
Uses Application-Specific Data Files (YES or NO:

Directory Nanme (Absolute):

File Listing:
S| ZE DATE/ TI ME El LENAVE FORVAT

(Repeat Directory Nane and File Listing for each directory)

2.0 RDBMS | NFORVATI ON
2.1 Database/ Tabl e Usage
Uses Application-Specific Inform x Database Tables (YES or NO:

dbspace S| ZE (2K pages) DATABASE NANVE

RWCT

TABLE NAVE

2.2 Database Schenma

2.3 Data Dictionary

Exhibit A7-6. Contents and format for PART B. SUBPROGRAM FI LE AND DATABASE

I NFORVATI ON.

A7-22

SUBPROGRAM TI TLE

PART C. SUBPROGRAM CREATI ON AND | NSTALLATI ON PROCEDURE
1.0 tar File Information
tar file(s) provided (YES or NO: _

VEDI UM LABEL:

File Listing:
S| ZE DATE/ TI ME El LENAVE

2.0 SUBPROGRAM Creation and Installation

2.1 Makefiles

2.2 Application Environnent

Operating System Ver si on:
Conpi l er/Interpreter: Ver si on:

(repeats for each conpiler/interpreter)

Envi ronnent Vari abl es:

NAVE DEFI NI TI ON RUN SETUP

SCOPE

2.3 Detailed Installation Procedures

2.4 Installation Scripts

Directory Nanme (Absolute):

File Listing:
S| ZE DATE/ TI ME El LENAVE SHELL

(Repeat Directory Nane and File Listing for each directory)

Exhibit A7-7. Contents and format for PART C. SUBPROGRAM CREATI ON AND
| NSTALLATI ON PROCEDURE.

A7-23

SUBPROGRAM TI TLE

PART D NANUAL PAGE FOR PROGRAMVERS

NAME

routine_name - one-sentence description of the routing's functionality

SYNOPSIS
Ligs al necessary #include's, and shows the full call sequence, as below.

#i nclude ...
#i nclude ...

int routine_name (first paraneter,
one paraneter per |ine,
| ast paraneter);

DESCRIPTION

Provide a complete but concise description of the routine--enough detail to let a potential user
determine what the routine does, and how it works. Give agorithms, references, etc. Bold and
italicize the parameter names when they are included in this description. List by name, show
data type and input/output usage, and define dl parametersindividudly as shown below. |f
specific unitsarerequired for a parameter that isa physical variable, be sureto
indicate that infor mation.

parameter_name- provide adescription in sentence form. (TYPE) (INPUT/OUTPUT)
OUTPUT:

Describe dl direct outputs such asfile creation, file writes, and error logs and messages.

RESTRICTIONS:

Describe any limitations on use of the subroutine (Sngularities, sze redrictions, disalowed
parameter values, etc.).

COMMENTS:
Optiona information about the agorithm, code history, etc.
LANGUAGE: Thelanguage in which the subroutine or function is written.

RETURN VALUES

Ligt the return values and data types, with a short description of each. Include units for physical
variables.

ERRORS
List the vaid error codes (if any) and describe each, as below.

ErrorCode - description

A7-24

EXAMPLES
Show a source code example of acdl to the function or subroutine, with al caling variables
defined and (if FORTRAN) dimensioned, and al necessary i ncl ude filesdedared inthe
cdling code.

SEE ALSO
None, or ligt the names of any related or subordinate routines for which there are manua pages
of documentation.

Exhibit A7-8. Contents and format for PART Do MANUAL PAGE FOR PROGRAMVERS.

A7-25

Attachnment 1

TDL FORTRAN Codi ng Qui del i nes

ATT1-1

METECOROLOG CAL DEVELOPMENT LABCRATCORY
FORTRAN SCFTWARE DEVELOPMVENT AND DOCUMENTATI ON GUl DELI NES
FOR AW PS DESI G\, DEVELOPMVENT, AND TESTI NG TEAMVS

Harry R d ahn

1. I NTRCDUCTI ON

The software devel opnent and docunentati on guidelines contained in this
docunent were created for use by the Design, Devel opnent, and Testing (DDT)
Teans for the devel opnent of applications for AWPS. These are teans |ed by
Met eor ol ogi cal Devel opnent Laboratory enpl oyees and i ncl ude support
contractors, including the AWPS contractor, PRC

Perhaps it is just as inportant to say what this docunent is not, as to say
what it is. It is not intended to describe a conplete software devel opnent
nmet hod, conplete with design docunents, code reviews, test procedures, etc.
Those are inportant concepts and are being inplenented according to the
Sof tware Devel opnent Pl an (Mt eorol ogi cal Devel opment Laboratory 1995).

The critical inportance of devel oping well docunmented and well structured
code has becone nore obvious with tinme. Except for, possibly, some snall
prograns/ subroutines witten exclusively to test an idea or structure that
wi Il soon be discarded, Governnent devel oped software will be inherited and
mai ntai ned by others. "Tricky" coding in the nane of efficiency is to be
avoi ded (although the definition of tricky will vary with individual).

It is inperative that we foll ow good codi ng and docunentation rules in the
devel opnent of all code, and in particular code that is to be handed off for
use outside of TDL. Reasons include:

Most devel opnent today involves nore than one person. Wth severa
persons involved in a project, it is inportant that guidelines be
followed so that all can easily "read" another person's program

Usually, it will fall to soneone other than the originator to nodify or
maintain a programat sone tine in the future. Again, if a program has
been witten and docunented according to prescribed rules, revisions and
nmai nt enance are nuch easier. This applies to external docunentation as
well as the code itself.

Code devel oped by the DDTs is for the express purpose of inplenentation
and integration into a nuch larger system If all such code (including
| ocal | y-devel oped code formthe field) follows the sane guidelines,
understandi ng and dealing with it will be nuch easier, and we will be
able to answer questions nore readily than otherwi se. Docunentation
will, of course, be nandatory.

Standardi zation will reduce errors in coding and keystroking. The eye
and m nd becone accustoned to "patterns,” and a break in pattern may be
an error. |If there are no established patterns in the code, or if the
patterns are considerably different fromthose to which the reader is
accustoned, this human error detection feature cannot operate
effectively.

Converting a body of software fromone conputer systemto another is
easier if it is all witten and docunented to the sane standards.

ATT1-2

Persons witing code and having it keystroked by others need not explain
a preferred format; it will already be defined. Docunentation nay be
assigned to a person other than the one witing the code; an established
procedure nakes individual coordination on a docunentation fornat
unnecessary.

New enpl oyees with little or no programm ng experience can be nore easily
trained in good procedures if those procedures are witten down and
everyone foll ows them

Sone sinple optimzation procedures, if followed, can reduce execution
tine considerably. However, the prinmary purpose for these guidelines is
not central processor optimzation. Also, what is optinumfor one system
may not be for another

In summary, the objectives of these guidelines are to enhance clarity,
testability, maintainability, and person-to-person and conputer-to-conputer
transferability of software throughout its life cycle

Any system of software guidelines or standards is somewhat arbitrary.
Di fferent organi zations have different standards, and textbooks do not agree.
It is not so inportant exactly what the guidelines are, as it is that there be
gui del i nes (assum ng sone senbl ance of reasonabl eness, of course).

Thi s docunment contains codi ng guidelines for FORTRAN, a compani on docunent
contains guidelines for the C |anguage

2. FORTRAN CODI NG GUI DELI NES

The programm ng | anguage to be used is the version of FORTRAN appropriate to
the platformfor which the code is intended. FORTRAN 77 (or its successor
FORTRAN 90 when avail abl e) shall be used whenever avail able. Vendor-specific
extensions to the FORTRAN 77 standard can be used when they conformto FORTRAN
90 standards; when they do not, they should not be used unl ess absolutely
necessary.

Appendi x 1 of the AWPS Application Integration Framework Manual (Al FM
provi des a code exanple to which the reader should refer when readi ng the
foll owi ng guidelines.

Docunentation Block - Every program and subroutine nust start with a
docunentation block following the outline in AIlFM Appendi x 1. Starting columm
convention is inposed to pronbte readability. Generally, in the absence of
speci fic guidelines, standard typing rules should be used in preparing the
docunentation. |If the system being used supports |ower case characters as
wel | as upper case, then it is optional which is used for the docunentation

bl ock. Lower case for docunentation does distinguish that material from
execut abl e code (which shall be upper case) but does add a degree of

conpl exity and non-uniformity anong prograns/ progranmers.

Program Name - The first line should be the subroutine nane starting in
Col. 7. If it is a main program and the conpiler doesn't pernit a program
name, substitute a Conmment statement with the program nane.

Date, Programmer, Qrganization, Conputer - Miintaining the exact date is not
inportant; it is not used, for exanple, as the date the routine was added to
the library. The nonth and year are sufficient. Starting in Col. 10, the
date, the programmer's nane, TDL, and the conputer systemthe program was

ATT1-3

witten for are each put on the third line, after a blank comment |ine
separated by three spaces. Extra lines should be used here to indicate
nodi fication dates, etc., as appropriate. Spacing may be adjusted to "line
up" nanes, etc

Pur pose - Fol |l owi ng another blank line, the next line should contain the

word PURPOSE starting in Col. 10. Following that will be a short paragraph
expl ai ning the purpose of the routine. This need not be extensive, as
details can be placed in the programwiteup (external docunentation).

However, it should be conplete enough to be useful to the user. |If the
routine was witten specifically for a calling routine, the corment CALLED
BY XXX is useful. Start all lines in this paragraph in Col. 14.

Data Set Use - After the paragraph on "purpose" and a blank line, the next

line should contain DATA SET USE starting in Col. 10. Listed belowthis
line will be data set nanes followed by a brief explanation of them (see
Al FM Appendi x 1). The expl anation should state whether the data sets are
input, output, or internal. |If no data sets are used by this routine, put
NONE on the line foll owi ng DATA SET USE

Variables - The statenent follow ng those explaining data set use shoul d

contain the word VARI ABLES starting in Col. 10. Followi ng that, nost, if

not all, variables used in executable statenents in the program shoul d be
defined in the format shown in Al FM Appendi x 1. The equal sign should be in
Col. 23 followed and preceded by one space. Al lines except the one

defining the variable start in Col. 25 unless sone further indention seens
appropriate, such as in lists. (Standardization here will allow copying
fromone routine to another when the variable is used in nore than one
routine. However, nmany tines the explanation will have to be changed
slightly for it to pertain to a particular routine.) Variables appearing
only in COWON need not be defined, but when a variable is used in COWON
and in other places in the routine, it nust be defined. Variables used only
to pass on to another subroutine should be defined, but is not nandatory.
The cross reference list of the conpiled source will identify where the
variable is passed on

List all variables in the subroutine call sequence, if any, first and in
order. No other ordering is nmandatory, but sone |ogical sequence shoul d be
used and the best one to use nay depend on the routine. The ordering m ght
be al phabetical, especially if there are many variables. The order could be
the approxi nate order the variables are first used in the program
especially the input variables; having the definitions of the input
variables froman external source all in one place, and in order, has proven
to be very useful. For each variable that is in the call sequence, place at
the end of the comment either (INPUT), (CQUTPUT), (INPUT-QUTPUT) or
(I'NTERNAL) to indicate its use in the subroutine. (This is not appropriate
for a main program) This should al so be done for variables actually used
that are in COWMN. If, and only if, the type of variable is other than

I NTEGER*4 or REAL*4, place the type in parentheses at the very end of the
comrent, e.g., (CHARACTER*S).

Anot her option for grouping variables (other than those in the cal
sequence) is to have sections headed | NPUT, QUTPUT, etc. (starting in Col

14) and to put the appropriate variables under these headi ngs

Non- Syst em Subroutines Used - The non-system subroutines used in the program

are listed, separated by a conma and space and indented to Col. 14,

ATT1-4

follow ng the section headi ng NON- SYSTEM SUBROUTI NES USED, starting in Col.
10.

Declarative and Data Statenents - Such statenents, if any, should i mediately
foll ow the docunmentation block. An order such as PARAMETER, COWON, TYPE

DI MENSI ON, EQUI VALENCE, and DATA is appropriate. Al ways use PARAMETER first,
and DATA | ast.

PARAMETER - PARAMETER statenents shall define a variable only where a DATA
statenent will not suffice, nanely, in the definition of variable array

di rensions or, rarely, when a conputation is desired within the definition
toretain the conmputed formula. The cross-reference lists provided by sone
conpilers do not treat variables defined with PARAMETER statenents the sane
way as other variables, and sone ignore them altogether; this nakes checkout
nore difficult. This convention will |et the user know that any vari abl es
defined i n PARAVETER statenents are vari abl e di nensions.

COWON Bl ocks - COWMN bl ocks shoul d be used sparingly, if at all.

Generally, code is easier to foll ow when the variabl es needed are passed
through the call sequence rather than in COMWON, especially when sone of the
variables in the COWON are used and sone are not. Having variables in
COMWON can also nake it difficult to nmodify a programthat has nany
subroutines. In any case, all COVWON should be | abel ed. The name of the

bl ock shoul d be rather unique to keep to a mininmumconflicts that m ght
arise when a routine is used by others. For instance, XXXONE ni ght be a
good nane for a program naned XXX; this would be better than BLOCKI.

Type Statenents - Type statenments should not be used unless the type is
"unusual ." The CHARACTER type is unusual in this sense and is needed for
character variables. Do not use type statenents for REAL*4 or | NTEGER*4
variabl es. (See Variabl e Nam ng bel ow.)

Vari abl e Nami ng - The FORTRAN predefined specification of integer and rea
vari abl es shall be followed--INTEGER(I-N), REAL(A-H O Z). By using this
convention, it is much easier to catch integer/real conversion errors than
if the reader has to renenber the type of all variables in a specific
routine. Wth the advent of FORTRAN 77, reserving the letter "C' for
CHARACTER vari abl es in new code i s recommended. Do not use the IMPLICT
statenent. For maximumportability, limting the variable nane to six
characters is advisable, but not inperative. Variables used for only one
purpose (e.g., to hold values of dew point tenperature) should be given
easily recogni zabl e nanes (e.g., DEWP). (Using an array for multiple
purposes may nmake this difficult, if not inpossible, but equival encing
shoul d not be used to overcone the difficulty.) GCenerally, the use of
single characters, such as "I" and "J," should be reserved for DO | oop
indices. In two-dinensional grid indexing, the use of "I X' for left to
right and "JY" for bottomto top is a good practice, and the convention of
using the first index to refer to the "I X' direction is mandatory. Wen a
variabl e is passed to another routine, whenever practical use the sane nane
for the variable in both routines.

EQUI VALENCE Statenents - Equival encing vari abl es tends to nake code harder
to follow, and encourages mstakes. It nay also hinder optimzation in sone
conpilers. Only in special cases or where much nenory can be saved shoul d
equi val enci ng be used, or where character information nust occupy an | NTEGER
or REAL vari abl e.

ATT1-5

DATA Statenents - Wen val ues are specified in DATA statenents, try to
arrange themso that they can be easily read. This is especially inportant
for multiply dinmensioned arrays. Put on separate |ines whenever practicable
val ues pertaining to different dinensions.

In-Line Docunentation - In-line docunentation should be provided at
appropriate points in the program Sonmewhere between 10% and 50% of the tota
lines should be devoted to docunentation (besides the docunentation bl ock).
The comments are used to explain the code and shoul d be subordinate to it.
Therefore, with code that has executable statenments starting in Col. 7, start
all coments in Col. 10. One should expect to "read" the code with

expl anation by the comments, rather than vice versa. (Indention for |IF THEN
ELSE structures wi th acconmpanying comments will be treated later.) A block of
code can be expl ained before the block by comments separated above and bel ow
by a blank line ("C'" only on the line). A single line of code can be
expl ai ned by a single comment following (or preceding) the executable |ine
with no blank line. A comrent should be used to explain the purpose of a
call ed subroutine. Comments can be either upper or |ower case, but the usage
shall be consistent within a routine. darity is nany times enhanced by
inserting a blank line after a branch-type instruction. Coments are not to
be put on the sane |line as an executable statenent following an "!".

Length of Progranms - Program (subroutine) length (nunmber of lines of
execut abl e code) shoul d be governed by the function of the routine, and not by
sone arbitrary rule such as "all prograns will be between 10 and 100 |ines of
code." A specific maximumsize is not as inportant as conveni ent program
structure. Mdularity is inportant when neaningful, and it usually is

Top Down Coding - Programfl ow should be fromthe top dowmn. Wth the |F THEN
ELSE type of structures of FORTRAN 77, this is always possible w th enough

nesting. It is usually possible to do this even when the GO TO construction
is used. Sone slight duplication of code may be preferable to branching. In
all cases, it is the clarity of the code that is inportant. It nay be

confusing to have nests nore than, say, 6 deep. On the other hand, if a
programessentially repeats itself when input data so indicate, a branch from
sonewhere (usually near the end) back to (near) an input statement shoul d not
be confusing, and may be nore "natural” than trying to accommodate this option
with an | F THEN ELSE construction

Statenment Labels - Statenent |abels should always start in Col. 2, no natter
how nmany digits they contain. Nunber only those statenents to which reference
is made (i.e., only those it is necessary to nunber). Mst cross reference
lists will indicate any statenent nunbers that can be renoved.

Sorre | ogi cal nunbering sequence nust be followed. Sone possibilities are:
The nunbers range from 1l through 9999 and be i n sequence
The nunbers always contain 4 digits and be in sequence

The prinmary nunbering systemstart at 100 or above and end at 999, but, upon
revision, when it is necessary to insert nmore nunbers than space has been
provided for, a fourth digit is added. Since all nunbers start in Col. 2
they "appear" to be in order even though 1115 cones between 111 and 112
(this nay be slightly inconvenient in some conpiler's cross reference
listings, as all 3-digit nunbers nay precede 4-digit nunbers). Al though
this nmethod may seemat first glance to be nore conplicated, it is really
very sinple and workabl e.

ATT1-6

Statenment Format - For prograns that are basically not in the IF THEN ELSE
structure, start all statenments (except comments) in Col. 7. Continuation
statenents should be indented by at |east 5 spaces unless there is a reason to
do otherw se (a FORMAT statenment can usually be split between lines with no
probl em-even a string of characters can be stopped and restarted on anot her
line). Limt the line length to the FORTRAN 77 standard, 72 characters.

Statenents shoul d not include blanks unless they are necessary to inprove
readability. Establish a pattern and stick with it. Exanples as used in TDL
prograns are:

SUBROUTI NE | NTR(P, BY, BX, BB)

DI MENSI ON SAVE(2, 2), P(61, 81)

EQUI VALENCE (P(1, 1), NPK(1)), (X, Y)

COVMON MA00/ VRBL1(10) , VRBL2(10) VRBL3(100)
1 VRBL4(1000)

CALL RDMOSH(N, NWDS, NROS, NCOLS, JDATE, NERR)
WRI TE(KFI L12, 130) KDATE(MI) , JDATE

130 FORVAT(' THERE IS A PROBLEM WTH THE | NPUT DATA NEEDED, KDATE ='18,'. ',
1 ' DATE FOUND IS ='18)

X=1 B(J) +l A(K) +3* (K+I C(J) **4) +M N
CHARACTER* 3 CWSFO, CNCDE, CTI ME(10)
DATA NCRIT/2,1,1,1, 1/

PARAMVETER (ND2=41,
1 ND3=39)

STOP 115

Note that a commrent following an "!" shall not appear on the same line as an
execut abl e statenent.

Continuation Lines - Continuation |ines can be denoted by the sequence of
nunbers 1 through 9, then al phabetically starting with A. Cccasionally, it
may be desirable to start the sequence with 2 rather than 1 in DATA
statenents. As an option, the sane character can be used for all continuation
l'i nes.

Spaces Versus Tabs - Wen spacing over to where a statenment, statenent |abel,
or comment is to start, use the space bar, not the tab.

CONTI NUE Statenents - Continue statenents shoul d be used only where necessary,
except a CONTINUE is always used at the end of a DOl oop. End each DO | oop
with a separate CONTI NUE statenent even though this is not logically
necessary. This serves the purpose of notifying the "reader” that this is the
end of a DOloop, and may aid in optim zation for sone conpilers. Each nest
of a nested DO loop will have its own CONTI NUE

ATT1-7

DO Loops - A blank comment shoul d i medi ately precede a DO statenent and
follow the DO | oop's CONTINUE staterment. For very short, nultiple nests, a
separate blank for each loop is not needed.

FORMAT Statenents - Fornmat statenents should be used in the code where they
are referenced, and should be nunbered in sequence along w th other nunbered
lines. A FORVAT statement should imediately follow the first I/0O statenent
which refers to it. For ease of possible later nodification, it may be best
to duplicate a FORVAT statenent, except for its nunber, so that it can be with
the statement that refers toit. |If multiple statenents refer to the same
FORMVAT, |ater nodification nmay renove (or renunber) the FORMAT, even though it
is referred to el sewhere in the program and a conpile error will occur. Wen
l ooking at the printed output and the code that produced it, it is much easier
to match the output to the FORVAT statenent when the FORVAT and the I/0
statenment are together

Indention - Several rules for indention of statenents are given above in
connection with other topics. |In general, when the GO TO structure

predomi nates, start executable statenments in Col. 7 and conmments in Col. 10.
For | F THEN ELSE structures, sone indention shall be used. One optionis to
i ndent each "nest" another 3 spaces. Coments could be indented 3 nore
spaces. Wiatever convention is adopted for a routine, it nmust be used
consistently within the routine

1/ 0 Device Reference - Device reference by FORTRAN nunber should be with an

I NTEGER variable, not a constant. For nain prograns, this variable should be
given a value in a DATA statenent. For subroutines, this variable should be
passed through the argunent |ist, after being defined in the nain program In
sone cases, it may be nore convenient to read the variable nane froma contro
file. A convenient convention is KFIL1 for Unit No. 1, etc. A device

ref erence nunber shoul d al ways be passed to a subroutine to be used for the
default output. A convenient nane is KFILDO and if used consistently can be
easily identified for that purpose in all routines.

Variabl e D nensions - Wienever there is a chance that the dinmensions of a
variable will be changed, and al ways when the dinensions are referred to in
other statenents (for exanple, to keep fromoverflowing the array), the

di mensi ons shoul d be declared by defining a variable in a PARAMETER st at enent.
The actual nunber shoul d never be referred to in the code, but rather referred
to by the variable nane used in the PARAMETER statenent. Usually, variables
and their dinmensions should be carried to subroutines through the argunent
list.

Subroutine Call Sequence - No matter what rul es are established, exceptions
will occur. Common sense nust prevail. However, to the extent practicable,
the order should be as foll ows:

! |f data set reference nunbers are provided, put themfirst.
! Gher input to the routine should foll ow

T variables used for both input and output or work area should then follow

Qut put variables, ending with an error (return) code (if any) and finally
the alternate return synbol (s) (return to a statenent nunber--FORTRAN 77
uses an * for this purpose in the SUBROUTI NE statenent) should cone |ast.
Alternate returns should be used sparingly, as follow ng the programlogic
is usually nore difficult than using an error (return) code and checking it

ATT1-8

for desired branches. However, alternate returns are very useful in some
situations (e.g., repeated calls to a subrouti ne where the sane actionis to
be taken for all such returns).

Vari abl e dinensions for an array or arrays should follow the |ast array nane
in which they are used. Miltiple dinensions passed for an array shoul d
occur in the sane sequence as they occur in the DIMENSION statenent. For
extensive call sequences, the dinmensions could all be put together near the
end.

Subroutine Entry Points - Each subroutine should have only one entry point.
Do not use the ENTRY statenent.

End of File and Error Checks - Error checks for input should be used. Errors
can be indicated by an error code returned to the calling routine (preferably
with a print--actually a WRITE to the unit KFILDO -of the diagnostic in the
routine itself and with the value returned in the variable IER), or exit can
be made to an error handling routine. |In case the error is fatal, it may be
all right to stopin the routine itself with an appropriate diagnostic (see
Program Term nati on bel ow).

Error Codes - Wienever possible, the "no error” condition should be "0." Use
these as | NTEGER vari ables, not as, for exanple, LOGd CAL.

Non- St andard Features - Most conpilers will pernit use of some non- FORTRAN 77
features. Sonetinmes a FORTRAN 77 statenent and its ol der counterpart (e.g.
FORTRAN 66) nmay both work. Wen converting a programto FORTRAN 77, if the
conpi l er does not flag the "error," it may go unrecognized; this is
inevitable. However, we should stick to the FORTRAN 77 version as best we
know it and can. System subroutines whose |ikelihood of being used by another
conpi ler is not high should be avoi ded

Indexing Variables with Miltiple D nmensions - Wenever practicable, in nested
DO | oops, index the first variable indexed with the innernost DO This is
conputationally nore efficient for some conpilers and nay help to reduce
paging in large, conplex systens. It nay be inpossible to always followthis
rule, but it shall be followed whenever it is reasonable to do so

Program Term nation - Generally, nain prograns should indicate in the nornal
print nediuma successful conpletion, such as "XXX COWLETED, " where XXX is
the program nane. Any other stop shoul d:

Produce in the print mediuman indication of the problemand where the stop
occurred. The latter can be done by using a statenent such as "STOP AT
1013" where 1013 is the statenent nunber at or near where the stop occurred.
The term nation of the programshould be with the statenent STOP 1013

If the stop is in a subroutine, an error statenent which includes the
subroutine nane should be printed, such as "STOP I N XXX AT 1013" where XXX
is the subroutine name and 1013 is the statenment nunber at or near where the
stop occurred. The reason for the stop with values of pertinent variables
shoul d al so be printed if such would be helpful. The term nation of the
subroutine should be with the statement STOP 1013. A little time spent
arranging for this diagnostic may save nmuch tinme later on

Generally, it is better to return an error code froma subroutine rather
than to termnate when there is a problem this should be done if the user
can exerci se judgnent about how to proceed. However, if the error is

ATT1-9

unrecoverable, or if in the judgnment of the author of the subroutine it
woul d definitely be a mistake to continue, the stop can be in the
subroutine. (The best procedure to use may vary with circunstance; a STOP
in a subroutine nay be prohibited in "operational” jobs.) |n any case, the
user nust always be protected frombad results or data

Printed Qutput - Qutput to be printed should be arranged in an easy-to-read
format. For instance, line up colums of nunbers. Also identify val ues
printed in well-understood terns or in terns of variables defined in the
program writeup.

3. REVISION CF EXI STI NG CCDE

Much of the devel opnent done centrally and locally will consist of revision
of existing code gathered from various organi zations. Needless to say, this
code will come in varying forns of conpl eteness and docunmentation. Wen the
decision is made as a group effort as to which code to use, it will be
determ ned as to how nmuch to nake the code conformto the guidelines. For
extensive rewites, it may be advisable to nake it roughly conform However,
for nmore minor changes, it will be better to followthe "style" of the
exi sting code (provided, it has a consistent style). Two conflicting goals
can provide sone guidance: (1) Use existing code as nuch as possible, and
(2) nmake sure each nmodule is well structured and docunented, as well as being
reasonably efficient and fulfilling the required functions. Note that it is
not necessary to renove all "GO TGs" to achieve opti mumnetrics.

4. DOCUMENTATI ON

Ext ernal docunentation will follow the standards defined in Appendix 4 of
the AWPS Al FM

5. AWPS SPECI FI C COWENTS
At this witing, a nunber of issues regarding integration of code into AWPS
are unknown. For instance, the way error |ogging and user notification are to
be treated are not defined.
6. REFERENCES
Met eor ol ogi cal Devel opnent Laboratory, 1995: Software Devel opment Pl an for

Produci ng WFO Hydr onet eorol ogi cal Applications for AWPS. National Wather
Service, NOAA, U S. Departnent of Commerce, 18 pp. plus attachnents.

ATT1-10

